Comment on "Spanning Probability in 2D Percolation"

Recently, Ziff [1] calculated the probability $R_L(p)$ for a nearest neighbor (nn) site percolation cluster to span a square lattice of size L at occupancy p, using rule \mathcal{R}_1 of Ref. [2] (spanning in one given direction, free boundaries in the other direction). For p near the threshold p_c , and for $L \to \infty$, he fitted the results to the form $R_L(p) =$ $f_1(x)+L^{-\vartheta}f_2(x)+\cdots$, where $x=(p-p_c)L^{1/\nu}$ and $\vartheta=1$. He found that $f_1(0) = 0.5$, and stated that (1) the latter result contradicts the renormalization group (RG), which would yield $R_L(p_c) \rightarrow p_c$ as $L \rightarrow \infty$, (2) the function $f_1(x)$ is universal for all 2D systems satisfying \mathcal{R}_1 , (3) $\vartheta = 1$, and (4) $f_1'(x)$ is even, but $f_2(x)$ has both even and odd terms. The present Comment addresses these statements.

The real space RG of Ref. [2], based on the recursion relation $p' = R_b(p)$, with the length rescale factor b, is only approximate. In fact, iterations generate new variables (e.g., bond occupation [3]), and yield flow in a large parameter space. p_c corresponds to the value of p which sits on the critical surface within this space, and flows to the true fixed point. Near the fixed point, R_L depends on the scaling variables, including $t = p - p_c$ and the irrelevant variables ω_i , with recursion relations $t' = b^{1/\nu}t$, $\omega'_i = b^{-\vartheta_i}\omega_i$. Ignoring transient steps, very close to p_c we may iterate until $L = b^l$ [3], $R_L(p) = F(At, B_i\omega_i, L) = F(AtL^{1/\nu}, B_i\omega_iL^{-\vartheta_i}, 1) =$ $\hat{F}(\hat{x}, \hat{y}_i)$. Except for the nonuniversal scale factors A and B_i [4], $\hat{F}(\hat{x}, \hat{y}_i)$ is determined by the fixed point, and is universal. Thus, $R_{\infty}(p_c) = \hat{F}(0,0)$ depends only on the spanning rule, and is universal. However, $R_{\infty}(p_c)$ need not be equal to p_c . To set A and B_i one may normalize For so equal to p_c . To see 11 and p_f and p_f is may normal.
 \hat{F} with some convention, e.g., $\frac{\partial \hat{F}}{\partial \hat{x}} = \frac{\partial \hat{F}}{\partial \hat{u}_c} = 1$ at $(0, 0)$.

For two complementary lattices, e.g., the square lattices with nn and nn+nnn (next nn) connectivity, one has [2] $R_L(p) + R'_L(1-p) = 1$. Since $p'_c = 1 - p_c$, this yields $R_{\infty}(p_c) = \hat{F}(0,0) = 1/2$ [5]. This also implies that $A = A'$, $B_i = -B'_i$, and that $\hat{F}(\hat{x}, \hat{y}_i) - 1/2$ is odd in both \hat{x} and \hat{y}_i . Expanding near $(0, 0)$,

$$
R_L(p) \approx \frac{1}{2} + \hat{f}_1(\hat{x}) + \sum_i \hat{y}_i \hat{f}_{2i}(\hat{x}) + \sum_{i,j} \hat{y}_i \hat{y}_j \hat{f}_{3ij}(\hat{x}), \quad (1)
$$

where the universal functions \hat{f}_1 and \hat{f}_{3ij} are odd while \hat{f}_{2i} is even in \hat{x}

Concerning Ziff's points, we conclude that (1) although the result $R_{\infty}(p_c) = 0.5$ contradicts the approximate RG of Ref. [2], it is consistent with the true RG. (2) Basically, Ziff's novel discussion of universality is correct. However, his function $f_1(x)$ is not universal unless x is replaced by $\hat{x} = Ax$. (3) In addition to $\vartheta_2 = 1$ one should also expect nonanalytic corrections. For 2D percolation, the leading correction has $\vartheta_1 \approx 0.85$ [6]. (4) In contrast to Ziff's Eq. (7), $f_2(x)$ contains only even powers of x.

Equation (1) yields several new predictions. First, as $L \rightarrow \infty$ we can ignore the irrelevant variables and expand

$$
R_{\infty}(p) \approx 1/2 + a_1 x + a_3 x^3 + \cdots. \tag{2}
$$

However, $a_1 = A \frac{\partial \hat{F}}{\partial \hat{x}}(0,0)$ and $a_3 = A^3 \frac{\partial^3 \hat{F}}{\partial \hat{x}^3}(0,0)/6$ are not universal, whereas a_3/a_1^3 is. Second, using only ϑ_1 and ϑ_2 the data at p_c should scale as

$$
R_L(p_c) = 1/2 + \sum_{k,l=1}^{\infty} b_{kl} L^{-k\vartheta_1 - l\vartheta_2}, \qquad (3)
$$

where $k + l$ is odd. Although b_{kl} are nonuniversal, the combinations $b_{kl}/b_{10}^k b_{01}^l$ are universal. Third, the value p_{0.5}, which solves $R_L(p_{0.5}) = 0.5$, scales as $p_{0.5}(L) - p_c \sim (b_{10}L^{-\vartheta_1} + b_{01}L^{-\vartheta_2})L^{-1/\nu}$. Since $\vartheta_1 < 1$, for large L this is dominated by the first term, and not by Ziff's Eq. (1).

To check our predictions, we measured $R_L(p)$ for square lattices with (a) nn, (b) nn+nnn, and (c) nn+nnn+nnnn (3rd nn). Fits by Eq. (2) yielded (a) $a_{1,3} = 0.760 \pm 0.005, -0.455 \pm 0.02,$ (b) $a_{1,3} = 0.760 \pm 0.005$ 0.005, -0.45 ± 0.02 , and (c) $a_{1,3} = 0.845\pm0.010, -0.615\pm$ 0.03 (we find $p_c = 0.2891 \pm 0.0002$ [7]). Indeed, $a_3/a_1^3 \approx$ -1.02 ± 0.02 for all cases. (a) and (b) confirm $A = A'$. The analysis of Eq. (3) is more difficult, apparently due to competing signs of the 4 terms with $k+l = 3$. Preliminary fits to our sq(nn) data yielded $b_{10} < b_{01}$, possibly explaining the dominance of $\vartheta = 1$ over Ziff's finite L range. Larger L 's are needed to settle this issue.

We thank D. Stauffer, J. Adler, and particularly R. M. Ziff for very useful discussions. Work at Tel Aviv was supported by the German-Israeli Foundation. J.-P. H. acknowledges financial support from Neste Foundation.

Amnon Aharony^{1,2} and J-P. Hovi³

- 'Department of Physics
- University of Oslo, Oslo, Norway
- ²School of Physics and Astronomy, Tel Aviv University
- Tel Aviv 69978, Israel
- Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland

Received 14 July 1993

- PACS numbers: 64.60.Ak, 05.70.Jk
- [1] R. M. Ziff, Phys. Rev. Lett. 69, 2670 (1992).
- [2] P. J. Reynolds, H. E. Stanley, and W. Klein, J. Phys. A 11, L199 (1978); Phys. Rev. B 21, 1223 (1980).
- [3] D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor snd Francis, London, 1992).
- [4] A. Aharony, Phys. Rev. B **22**, 400 (1980).
- [5] R. P. Langlands, C. Pichet, Ph. Pouliot, and Y. Saint-Aubin, J. Stat. Phys. 67, 553 (1992).
- [6] D. Stsuffer, Phys. Lett 8\$A, ⁴⁰⁴ (1981); J. Adler, M. Moshe, and V. Privman, Ann. Israel Phys. Soc. 5, 397 (1983).
- [7] M. Gouker and F. Family, Phys. Rev. B 28, 1449 (1983).

0031-9007/94/72 (1 2)/1941 (1)\$06.00 1994 The American Physical Society