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Periodic Branched Structures in a Phase-Separated Magnetic Colloid
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Periodic branched columns are observed for the first time in a layer of phase-separated magnetic col-
loid confined in a cell. The periodicity A, scales with the layer thickness L. In the thin limit, where no

branching occurs, A, ~L ' . In the thick limit, each column develops a tree structure with branches and
roots, and the columns are separated by shrubs while the scaling relation crosses over to A, a:L+3.

PACS numbers: 75.5G.Mm, 47.54.+r

Periodic structures in nature are often the optimum re-
sults of competition among different energies. Domain
structure with alternating spin orientations in a ferromag-
netic thin slab originates from the competition between
the short range exchange interaction and the long range
dipole energy [1]. The mechanism responsible for lab-
yrinth patterns in ferrofluids [2] is the competition be-
tween the surface tension and the dipole interaction. The
balance among various energy scales usually leads to
scaling laws between different physical quantities.

In this Letter we report our studies of the periodic
column structures in a phase-separated magnetic colloid
when it is subjected to a magnetic field. For a thin cell,
the columns are unbranched with the periodicity, X, in-

creasing with the cell thickness, L, as A, -L ' . For large
L, we observed, for the first time in a magnetic colloid,
multilevel branched fine structures in each column and
dangling side branches between main columns. The scal-
ing law relating the average distance between columns
and the cell thickness then changes to A, -L . Although
the unbranched columns in the thin limit have been seen
before [3], the observations of multilevel branching, dan-
gling side bands, scaling laws, and the connection be-
tween the structural change and the exponent's crossover
are new. We will also show that contrary to the situa-
tions in 2D ferromagnets [1,4], different energies compet-
ing with each other originate from the same interaction,
namely, the dipole interaction alone.

Experiments are performed for a magnetic colloid
made of magnetite particles coated with oleic acid and
suspended in n-eicosane (melting point: 309 K). The
volume fraction of magnetic particles is 12% with mean
diameter of particles 89 k Three kinds of sample cells
are used: (a) parallel glass plates with plastic spacers
(type &); (b) wedged glass plates with an angle between
them of less than I deg (type 8); and (c) tube with ellip-
soidal cross section and the diameter of the tube gradu-
ally increasing from one end to the other (type C).
Wedged cells make the thickness an adjustable parameter
awhile a tube cell provides a clear side view. Melted sam-
ple is introduced to the gap of the cell by capillary effect.
All the experimental results are obtained with the sample

in the liquid phase. The magnetic field applied is gen-
erated by an electromagnet. The images of the structures
are obtained by a charge-coupled device (CCD) camera
connected to a microscope and recorded by a VCR. The
heat generated by the microscope lamp is enough to melt
the sample. The temperature gradient is less than 0.1'C
across the field of view.

In zero applied field (the residual due to the earth' s

magnetic field is 0.5 6), we observed large aggregates in

the melted phase. The size of the aggregate droplets is

much larger than the size of the magnetic particles. We
believe that phase separation occurred in the system.
Upon applying a magnetic field, the agglomerates break
up into smaller droplets to decrease the demagnetizing
field. At small layer thickness, L, the stable structure is a
periodic two-dimensional lattice shown in Fig. 1 as ob-
served from the top of the parallel plates. The magnetic
field applied is 300 6, with orientation perpendicular to
the surface of the sample cell. Each circular dot in Fig. 1

represents a cross section of a column with its long axis
parallel to the field direction. The separation between the

C

FIG. 1. Periodic lattice structure in a field of 300 G. The
thickness L is less than 2 pm.
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FIG. 2. Periodic pattern in a relatively thick cell. The thick-

ness L 25 pm. The cross sections are altered from their origi-
nal circular geometry.

plates is estimated to be less than 2 pm, determined by
the thickness of the layer of glue holding the plates
together. %e found that when L increases, both the
characteristic size of the column and the distance be-
tween columns increase. Furthermore, the circular cross
section in Fig. 1 changes to a noncircular one at larger
separation of cell thickness. Figure 2 is such a pattern in

a cell of thickness L =25 pm and an applied field of 300
G. It differs from the one in Fig. I not only by the
characteristic size of each cross section and the distance
between the two neighbors but also the actual structures
themselves. The pattern in Fig. 2 represents a tree type
structure with split branches (multiple bifurcations). We
confirmed this by changing the focus of the microscope at
different levels. When we slightly increase the distance
from the object so as to focus at a higher level, one single
object is seen to split into several separate ones.

One can argue that the periodic structure observed is

simply due to the balance between the field energy term,
which tries to elongate columns thus reducing the dis-
tance A, between them due to the volume conservation of
the aggregates, and the repulsion between columns that
favor the increase of X,. From this argument, Lemaire,
Grasseli, and Bossis [5] assumed that in their magnetic
suspension formed of micronic polystyrene particles sur-
face tension is unimportant. However, we believe that
the presence of interfacial tension between the phases
plays an important role.

In order to further understand the diA'erence between
the structures in Figs. 1 and 2, we use a type C cell to
view these structures from the side. Figure 3(a) shows
the periodic columns in the thinner limit. %e can see
that the discrete phase does not wet the glass. Figure
3(b) shows the structure of a thicker layer. The

FIG. 3. Side views of unbranched and branched columns:
(a) unbranched columns in the thinner part of the tube where

the mean thickness is 18 pm, corresponding to the lattice struc-
ture in Fig. I; (b) multiply branched columns with side struc-
ture between neighboring columns as observed in the wider part
of the tube; the center thickness is 85 pm. The structure sho~n
in (b) corresponds to the structure in Fig. 2 viewed from the
side. (c) A sketch illustrating the geometry determined from
(b).

branched structure at an end is clearly visible. Figure
3(c) is a sketch illustrating the geometry determined
from Fig. 3(b). The magnetic fields in Figs. 3(a) and
3(b) are parallel to the axes of columns.

In l986, a theory [6] redicted the scaling relation be-
tween A, and L as Xa:L' from linear instability analysis.
Bacri and Salin's result [3] was cited to support their pre-
diction. %e have measured the structure period A, as a
function of cell thickness, L. Both type A and type 8
cells are used. We plot A. as a function of mean distance
L from different subregions. The result from the type 3
cell is no different from the data taken from the type 8
cell. The results from type 8 cells are plotted in Fig. 4.
Dots are the data from one kind of type 8 cell with a
wedge angle of 0.06 and the triangles are from another
type 8 cell with a wedge angle of 0.3 . The two points
from the larger cell (circles) overlap well with the data
from the smaller cell (triangles) in the region where the
thicknesses from both cells are equal. In our thickness
range we did not find the l j3 scaling law as predicted by
the theory in Ref. [6]. We noticed that if we plot k
versus L as in Ref. [6], the plot is not sensitive to a at
all. In this plot c can be anywhere between 3 to 4. If
we plot logk versus logL the slope, or the scaling ex-
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the dense phase, the density of magnetic particles in the
diluted phase 1 can be taken as zero. Therefore the first

term in the energy expression disappears and the second
term is a constant at the fixed field. Considering the case
that the period 1, is much smaller than the separation of
the slot, L, and omitting the constant terms, the resulting

energy can be expressed in the following form [7):

sin ~(irriA. JX)E= + 4X,
ir'L n-i n'[I+coth(anL/k) j

FIG. 4. The periodicity A, of columns scales with the thick-
ness L of the sample ceil. The scaling exponent is & at small L
and crosses over the 3 at large L.

ponent, can be fitted unambiguously from a value around
in the thin limit to T in the thick limit. Our results

disagree with that of Lemaire, Grasseli, and Bossis [Sl
where they found that the scaling exponent was 1. We
believe that our choice of fitting function better repre-
sents the data. The crossover between scaling exponents
occurs in the interval 10&L &20 pm. The crossover
marks the change from an unbranched to a branched
structure as illustrated in Figs. I to 3.

In order to understand the mechanism responsible for
both the unbranched and branched tree-type structures
observed, we studied the free energy of the system. Be-
cause the average size of an aggregate is on the order of a
few microns or larger, Brownian motion is essentially
nonexistent. Thus the entropy term connected with an
aggregate's thermal motion is negligible in the expression
of the volume density of energy of the system which
includes four terms: F. fi(ni, H)ki/A, +fq(nq, H)AQX
+2cr/X+f, where fi and fp are the energies associated
with the diluted and the concentrated single column, re-
spectively. Ii, i and Xq are the column widths for diluted
and concentrated phases, respectively, with A, i+Xq=X as
illustrated in Fig. 3(c). ni and nq are particle volume
fractions in the two phases and H is the applied magnetic
field. 2o/IL, is the wall energy density, cr being the
effective interfacial tension between concentrated and di-
lute phase, arising from attractive dipole interaction
among particles. %'e believe that this attraction is re-
sponsible for the initial agglomeration in the system. f
is the demagnetizing energy of periodic columns that ac-
counts for both the energy associated with fictitious
charges on surfaces of a single column and repulsion be-
tween neighboring columns. . %'hen phase separation
occurs, most of the particles are in the concentrated
domains. Thus for simplicity we assume that the volume
fraction in the concentrated phase is the densest packing.
Because of the particle conservation law we have nzAz
=nA, , where n is the original particle concentration in the
homogeneous phase. Because n and nz are both fixed,
kz/A, is fixed. From the assumption of closest packing in

where Ao o/M is the characteristic magnetic length
and a is a numerical constant equal to

cos (irZ/2)
I/2

(3)

where Z I —2A, gA, . By comparing between Eq. (2) and
the scaling exponent obtained from the plot in Fig. 4, we
know that the energy form in Eq. (I) can describe the ex-
perimental results only in the thin limit (but we still have
L & X), because we did not include the surface contribu-
tion coming from the branched tails. To account for the
structures shown in Figs. 2 and 3(b), we need to include
the term connected with branching. Furthermore, to
correctly describe experimental results, one also needs to
add energy terms associated with small branches appear-
ing between big columns as shown in Figs. 3(b) and 3(c).
Including all the tiny agglomerates, the total energy for
the whole system can be expressed by [8]

X0 y'g (k(P.) '~'
(A.g) '~'

=a~ +2az +2a3 —2a4 y,L L

(4)

where y =2, and N is the number of branches deter-
mined by the derivative of (4) with respect to y. a; are
positive numerical constants depending on the volume
fraction of magnetic particles and the angle between
branches. The first term in Eq. (4) is similar to that in

Eq. (I) accounting for the wall energy of each column.
The second term is the demagnetizing energy due to sur-
face charges. The third and the fourth terms are associ-
ated with the branching energies for small structures

ln Eq. (I ) the magnetization for diluted phase is assumed

equal to zero and M is the magnetization in the concen-
trated phase. The second and the third terms are the ex-
plicit expression for f . We found that the energy in (I )
does not have a minimum without the surface tension
term. This may be contrasted with Lemaire, Grasseli,
and Bossis' argument [5j about the unimportance of sur-
face tension. The extreme of (I) at the fixed volume
fraction of agglomerates gives the characteristic po~er
law for the periodicity of concentrated domain distribu-
tion:

a(XQL) '
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(shrubs) present between columns and that of the
columns, respectively. The second term in (4) can be ex-
pressed explicitly as X[X2/A, (1+2()]y'/Lai, ~here X2/A, is

a constant as discussed above. g is the ratio of the dis-
tance between the neighboring siblings to the width of the
parent column. So the new period now changes to
A/[(I+2()2 ]. Branching causes the surface periodicity
to assume a much lower value than the bulk's, thus con-
siderably reducing the demagnetizing energy. If L is

large enough, this decrease largely compensates the addi-
tional branching energy term, favoring the branched
structure. This is the origin of the dangling structures
(shrubs) between neighboring branched columns (trees).

From Eq. (4) the equilibrium number of branches is

determined by d/dy(e/M ) =0, giving y*=a4/2a2(ko/
k) 'i . Since y ( 1, branching starts to appear when

period A, exceeds a critical value X that is proportional to
the characteristic magnetic length Xo. From the Hamil-
tonian in this regime, the equilibrium periodicity of the
structure (columns) is equal to

( /a ) 2/3g I/3L 2/3

Equation (5) describes the scaling exponent observed
experimentally for larger L as shown in Fig. 4. The
crossover from —,

' to —', is attributed to the formation of
small branches and shrubs in the system.

It is worth mentioning here that a two-dimensional fer-
romagnet [9] placed in a thin slab bears some similarities
with our system. The equilibrium domain width X in a
ferromagnetic thin film is found to scale with the slab
thickness D to the 1/2 power. For D larger than a certain
value, which is a function of the domain wall and the
magnetostatic energies, the branching instability devel-

ops. In this case, the ground state consists of a periodic
branched structure with the periodicity )t, related to the
thickness D as X a: D i [9]. Although the exponents are
similar to our system in both thin and thick limits, the

physical mechanism and consequences are rather diA'er-

ent. The competition associated with formation of fer-
romagnetic domains arises from different interactions:
short range exchange interaction aligning spins in a
parallel direction, and the long range dipole interaction
favoring domain structures to reduce the global field en-

ergy. While in our system all the energies, including the
field energy, the repulsive energy between neighboring
branches and columns, and the surface energy, arise from
dipole interaction among the particles or aggregates.

Competition between diAerent versions of the dipole ener-

gy leads to the scaling laws observed. Furthermore, the
total domain volume of each orientation in a ferromagnet
is not conserved. In our ferrofluid sample the total
volume of the agglomerates is constant if we take the
concentration in the dilute phase as zero.

In conclusion, we observed the periodic lattice structure
in quasi 2D geometry in a phase-separated magnetic col-
loid. The periodicity X scales with the layer thickness of
the sample. The scaling exponent was found both experi-
mentally and theoretically to be 2 in the limit of a thin

layer and crosses over to 3 in the thick limit. The cross-
over is due to the branching of columns and appearance
of small dangling structures that form between neighbor-
ing columns. The scaling relation originates from near
field and far field dipole interactions alone insofar as the
interfacial tension is due to the near field dipole force.
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