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Field and Surface Effects on the Ground State of Antiferromagnetic Systems
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The field dependence of the ground state of semi-infinite uniaxial antiferromagnets and films is
investigated in terms of a two-dimensional area-preserving map, where the surfaces are introduced
as appropriate boundary conditions. For the film, the ground state is calculated for any value of the
number of planes in a very rapid and accurate way. For the semi-infinite system, we show that the
so-called surface spin-flop state does not exist; by energetic arguments, we find that the instability
of the antiferromagnetic configuration leads to an interchange of the sublattices. A nonhomogeneous
ground state is instead found in the bulk spin-flop phase.

PACS numbers: 75.50.Ee, 03.20.+i, 75.30.Kz, 75.70.—i

It is well known [1] that when a magnetic field ap-
plied along the easy axis of an infinitely extended anti-
ferromagnet exceeds a critical value, Hgsp, there occurs
a sudden nearly 7r/2 rotation of the sublattices vectors
that drives the system into the so-called bulk "spin-flop"
phase [Fig. 1(a)]. On the other hand, films and semi-
infinite systems can have an inhomogeneous ground state
owing to the presence of surfaces. The uniaxial antiferro-
magnet with a field H along the easy axis has been largely
studied since the prediction of a surface spin-flop (SSF)
state in the semi-infinite system [2—4] [Fig. 1(b)]. A sur-
face phase transition was suggested [5,6] by the full soft-
ening, when H tends to a critical field Hsgi of the surface
mode calculated assuming an antiferromagnetic ground
state with the surface spins antiparallel to H (AFtt) [Fig.
1(c)]. In the SSF state, the spins turn by roughly n/2
close to the surface, and asymptotically reach the AFti
configuration in the bulk. According to Keffer and Chow

[3], for H ~ Hssp -+2', the SSF region expands oc-
cupying continuously stable equilibrium states, until the

FIG. 1. (a) The (uniform) bulk spin-flop stucture, stable
for H ) HBsF, in a translationally invariant system. (b)
The surface spin-flop structure, which was suggested to be
metastable for Hs & H & HBsF in Refs. [2,3]. (c) The
metastable structure AFti for H & Hs. (d) The ground
state AFyy for 0 & HBSF.

usual bulk spin-flop (BSF) state is reached. A doubt-
ful point of this description is that the BSF phase is
achieved in different ways according to whether the sur-
face spins are antiparallel or parallel (AFtt) [Fig. 1(d)]
to H. In the latter case the only instability is announced
for H = HBsp, like in the infinite system where a bulk
mode softens [5,6]. An analogous behavior of the excita-
tions is found for a film with an even number of planes
¹ one has two surface modes and for H = Hs only the
one localized at the surface with the spins antiparallel to
H shows a complete softening [7]. For such a system, the
nonuniform ground state was previously investigated [8]
by means of a numerical self-consistent approach in the
absence of anisotropy, for which Hs = HssF = 0+. Even
though the obtained results are well founded, this tech-
nique presents some drawbacks: there is no reliability to
obtain the absolute minimum and in proximity of phase
transitions the convergence is very slow [9].

In this Letter we present a study where the deter-
mination of the ground state is formulated as a two-
dimensional area-preserving map [10—12] and the sur-
faces are introduced with appropriate boundary condi-
tions [13]. The mapping is characterized by the fixed
points and the orbits of the infinite system, but the
spin structures relevant for our problem are only those
which satisfy the previous conditions, a very selective
constraint. In this way we are able to calculate the
nonuniform ground state configuration very rapidly and
with great precision, getting new and very interesting re-
sults. In particular, for the semi-infinite system we find
that the SSF state does not exist, and the instability
for H & Hg is ascribed to a Bloch wall nucleation with
a consequent interchange of the sublattices, making the
surface spins parallel to H. On the contrary, we show
that a nonuniform ground state is present in the BSF
phase. Finally, by our method we also get the nonuni-
form ground state for a film, and in the zero anisotropy
limit we recover the results obtained in Ref. [8].

Following Mills [2] and Keffer and Chow [3], the energy
is given by

0031-9007/94/72(12)/1925(4) $06.00
1994 The American Physical Society



VOLUME 72, NUMBER 12 PHYSICAL REVI E% LETTERS

E = ) [H@cos(4'D 4'D —1) HA cos Qn
II

—2H cos P„],
where HF. = zJS, HA = 2KS. J and K are the exchange
and anisotropy costants, respectively; n is the plane in-

dex, rvith n ~ 2Z for the inlnite system, n e K for the
semi-in6nite one, and n = 1,2, . . . , X for a 6lm. The en-

ergy can be written as Eq. (1) provided that the system
can be subdivided in planes parallel to the surfaces with
all the N~~ spins ferromagnetically aligned. Introducing

( = H/Hz and ( = HA/Hz, the equilibrium configura-
tions are given by

(3a)

(3b)

sin(P„+i —P„)+ sin(P„ i —P„)+ 2( sin P„+( sin 2P„=0 (infinite), (2a)

sin(P„+i —P„)+ (1 —6i,„)sin(P„ i —P„)+ 2( sin P„+( sin 2P„= 0 (semi-infinite), (2b)

(1 —
b'av „)sin(P„+i —P„)+ (1 —bi, „)sin{/„ i —P„)+ 2(sing„+ (sin 2$„=0 (film). (2c)

We first consider Eq. (2a), valid for the infinite system.
Introducing [12] s„=sin(P„—P„ i), it can be written shows nothing special; the ground state for all systems is
as a two-dimensional mapping the AF one.

= ~ +s'n "s More interesting is the analysis for g(+ ( & ( &

y 2( —3(2, the relevant region for the SSF state. In
terms of mapping (3) this state exists if and only if the

Solutions to Eqs. (3) can be obtained choosing a pair inflowing orbits (converging to P " or P+ ) cross the

(P, , s, ) and iterating the equations [14]. This map-
ping is area preserving (because the Jacobian is J = 1)
and invariant with respect to the transformation P -+
—P, s -+ —s. The fixed points correspond to uniform
ground states and, owing to the antiferromagnetic nature
of the system, are second-order ones. They are PA

(0, 0)) P+AF = (z 0) Pns = (—P, —sing), PBs

(P, sin P), where cos P = (/(2 —(). Carrying out a linear

stability analysis, it results that the AF fixed points are
hyperbolic for ('z & 2('+ ( = (esp/H@) and elliptic
otherwise. Qn the contrary, the BSF ones are hyperbolic
for (z & 2( —3(z, and elliptic for lower fields [15]. In
general, from the mapping (3) we obtain phase portraits
{seeFig. 2) characterized by inflowing and outflowing or-
bits connecting the hyperbolic fixed points, elliptic orbits
which encircle the homonymous fixed points, and, finally,

nonhomotopic to zero curves. We remind that energeti-

cally stable states corresponds to topologically unstable

(i.e., hyperbolic) fixed points [10,11].
In order to study the semi-infinite system and the film,

we have to take into account the presence of surfaces

given by the terms with the Kroneker's b in Eqs. (2b)
and (2c). For the semi-infinite system, this is equivalent

to introducing a fictitious plane for n = 0, so that

» = »n(4 i —4'o) = 0 (4)
becomes the boundary condition. For the film, two ficti-
tious planes must be introduced for n = 0 and ~ = ~+ I,
so that the boundary conditions are now given by

si ——sin(Pi —Po) = 0,
sing+i = »n(4N+i —

WN) = o. (5)

Among all trajectories obtained from (3), only those
which satisfy (4) or (5) represent equilibrium con6gu-
rations. For a 61m, the physical. trajectories must have
two intersections separated by exactly N steps of the re-
cursive mapping, a very selective condition.

For H & Hs (i.e., (' & g(+ (2), the phase portrait
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FIG. 2. Phase portraits obtained from mapping (3) for

( = 0.009. The arrows denote the inflowing and outflow-

ing (IO) orbits associated to the hyperbolic fixed points. (a)
( = 0.0975. (b) Enlargement of (a) for s 0. Note that the
IO orbits do not intersect the boundary conditions line 8 = 0,
i.e., the SSF state cannot exist. In addition, thoro nonhomo-

topic to zero curves are shorn: the one arith square symbols
satisfies Eq. (5) for an N = 26 film. (c) ( = 0.15. In this

case the IO orbits do intersect the s = 0 line, giving rise to a
nonuniform surface con6guration. The nonhomotopic to zero
curve pertinent to an N = 26 6lm is also reported.



VOLUME 72, NUMBER 12 PH YSICAL R EVI EW LETTERS 21 MARCH 1994

line s = 0 at P g 0, ir. From Figs. 2(a) and 2(b), where

a typical phase portrait is shown, it is apparent that this
does not happen. Consequently, the SSF state is not an
equilibrium one and it can neither be the ground state [16].
Another characteristic useful to stress is that an infinite

number of nonhomotopic to zero curves cross the s = 0
line. These trajectories present a fundamental relevance
for the films, since they are the only ones crossing the
s = 0 line in two difFerent points which are not fixed
points [see Fig. 2(b)]. Furthermore, there is only one
trajectory which, starting from si = 0, is able to satisfy
the condition a~+1 = 0, being always confined in the
gain energy region of the map [17]. If N is even, the
corresponding energy is smaller than the AF one and we

obtain the new ground state which is reported in Fig. 3.
For ( ) g2(+ (2 the fixed points P++" are elliptic while
PgsF are hyperbolic. The latter ones do not lie on the
boundary condition line and therefore the uniform BSF
configuration cannot be an equilibrium one neither for
the semi-infinite system, nor for the film. In fact, from
Fig. 2(c), where the results obtained for a moderate field

(( = 0.15) are reported, it is possible to note that in the
semi-infinite system we have a nonuniform surface con-
figuration, because infiowing orbits intersect the s = 0
line. Again, the nonhoinotopic to zero curves provide the
ground state for films [see Fig. 2(c)]. We note that in-

creasing N we must consider trajectories closer and closer
to P s and consequently we have that the middle planes
present a configuration very similar to the BSF one (see
Fig. 3). In the zero anisotropy limit, and for ( = 0.1925,
we recover the results of Ref. [8]. It is worthwhile to note
that our method is able to determine the ground state in
a very rapid and accurate way (within machine double
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FIG. 3. Ground state configuration for an N = 100 film

with g = 0.009. Open squares refer to ( = 0.0975, full circles
to g = 0.15. The solid horizontal lines show the canting angles
for an infinite system in the bulk spin-fiop phase for g = 0.15.

precision) [18].
A further increase of the field makes the analysis of the

phase portait more intricate because there is evidence for
chaotic behavior [7], and the problem will be discussed
in a future paper.

At this point, for H ) Hs, we have determined the
ground state for a film with a generic number of planes

N, but the problem is still open for the semi-infinite sys-
tem. We know from the analysis of the excitations [5,6]
that in this range of magnetic field the AFt 1 state is no
more a stable configuration, but we have also shown that
the predicted SSF state, or any other nonuniform config-

uration, cannot exist. This will be confirmed below by
an energetic, though approximate, argument.

The last term in the bracket of Eq. (1) is difficult to
handle in a semi-infinite system because it is an infinite

sum, the general term of which does not go to a limit at
infinity. To solve this problem, one can rewrite Eq. (1)

= ) [H@cos(gb~ —+~ 1) —HA cos Q~] —H ) [cos Q~ + cos $5~+1] —H cos @1. (6)

Only systems in which cos P„+cosP„+1goes to 0 when

n goes to oo will be considered. It is so both in the

AF11 state and in the AFy1 state, since cos p„+cos $„~1
is identically zero for any n in both cases. Therefore,
in both states, the Zeeman energy reduces to —H cos Pi
which is minimum in the AF11 state, but maximum in
the AF11 state.

Since the AFT' state is not the ground state, but it
is stable with respect to spin waves for H & Hs, we

conclude that it is metastable for K & Hs.

However, for Hs & H & HBSF the situation is difFer-

ent. We are going to argue that the AF 1 1 state is unstable
with respect to the formation of a Bloch wall which forms
at the surface and sinks into the bulk, thus transforming
the system in its AF~1 state. We start from Eq. (6).
As explained in Ref. [19], it. is possible to eliminate the
even spine S2„by a decimation procedure, which in the
present case is to be performed at zero temperature. For
small HA and H, and to lowest order in HA and H, the
result is

8 . H@ 2 f H2'l) (It'2n —1 4'2n+1)
~

2HA
I

cos' $2ra —1 H Cos $11 (7)

where the last term is due to the existence of a free surface at n = 1. The other terms can be derived as in Ref. [19].
Equation (7) has the well-known sine-Gordon form. However, this is only correct to lowest order. This approximation
is questionable near the bulk spin-fiop transition, where the coefficient of cos2 4I becomes small, so that higher order
terms should be introduced. In order to investigate the transformation of the AF11 state into the AF~1 state, and
also the stability of the SSF state, it is of interest to minimize this energy for a given value of $1 and for fixed
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FIG. 4. Succession of nonequilibrium configurations for the
semi-infinite system, starting from the unstable AFtg state.
The energy decreases as Pq ~ 0. The mmdmum energy gain is
achieved when the Bloch wall is pushed to an infinite distance
from the surface, thus accomplishing the stable AFyy ground
state.

cos Pz +q ———1 at n = oo. The solution of this problem
is given by the Euler-Lagrange equation of a domain wall

H@
[24'2n+1 4'2n+3 $2n-1]

H2
+ 2' — sin 2gz„+q ——0, (8)

H@

which in the continuum approximation reduces to the
pendulum equation. Inserting its solution into (7), one
obtains, after some algebra, the energy as

E = g(2HAH@ —Hz)(cosgq + 1) —Hcosgq. (9)
Nii S

We now want to minimize this energy with respect to
For weak fields, the coefficient of cosPq is positive,

so that the energy presents a minimum for costi = —1
or pq = vr. Thus, the AF11 state is a metastable one, in
agreement with the spin wave argument. In other words,
if a Bloch wall is introduced into the AF11 state from the
surface, the system expels it through the surface. This
occurs if H ( HAH', i.e. , if H & HnsF/v2. On the
other hand, if HBsF/v 2 ( H ( HrssF, the energy (9)
is a decreasing function of Pq and it is therefore mini-
mum for Pq

——0. In this case, if a Bloch wall is intro-
duced into the AF11 state from the surface, the system
swallows it and transforms progressively into the AFT'
state (see Fig. 4). In particular, the SSF state corre-
sponds to cosPq ——0, and it is unstable, in agreement
with the mapping argument. This description is corrob-
orated by the results obtained considering the case of
a surface anisotropy smaller than the bulk one [7]. We
have for H & Hg a metastable surface canted state but
increasing H this con6guration disappears when its en-

ergy exceeds the energy of the Bloch wall.
Concerning the relevance of our results for real sys-

tems, we remember that many difFerent materials can

be described by Eq. (1). This depends on the crystal
structure and surface orientation: fcc lattices like NiO,
MnO, and CoO [20] with (111)surfaces and bec lattices
as MnFz and FeFz [21] with (001) surfaces. Also, super-
lattices made of ferromagnetic films which are antiferro-
magnetically coupled [8,22] appear to be suitable for the
purpose.

We are grateful to A. Politi for useful suggestions and
discussions. One of us (J.V.) wishes to thank the Forum,
Institute for Condensed Matter Theory, INFM, Firenze,
for hospitality and financial support.

[1] L. Neel, Ann. Phys. (Paris) 5, 232 (1936).
[2] D.L. Mills, Phys. Rev. Lett. 20, 18 (1968).
[3] F. Keffer and H. Chow, Phys. Rev. Lett. 31, 1061 (1973).
[4] S.P. Vernon, R.W. Sanders, and A.R. King, Phys. Rev.

B 17, 1460 (1978).
[5] D.L. Mills and W.M. Saslow, Phys. Rev. 171,488 (1968);

176, 760(E) (1968).
[6] R.E. De Wames and T. Wolfram, Phys. Rev. 185, 752

(1969).
[7] L. Trallori, thesis (unpublished).
[8] F.C. Nortemann et al. , Phys. Rev. B 46, 10847 (1992).
[9] J.G. LePage and R.E. Camley, Phys. Rev. Lett. 65, 1152

(1990).

[10] S. Aubry, in Solitons and Condensed Matter Physics,
edited by A.R. Bishop and T. Schneider (Springer, New
York, 1979).

[11] P. Bak, Phys. Rev. Lett. 46, 791 (1981).
[12] P.I. Belorov et al. , Zh. Eksp. Teor. Fiz. 87, 310 (1984)

[Sov. Phys. JETP 80, 180 (1984)].
[13] R. Pandit and M. Wortis, Phys. Rev. B 25, 3226 (1982).
[14] The presence of the sin function implies that P„+q =

P„—vn + (—1) Q with v = 0, 1. A local minimization
criterion implies that v is an invariant of the mapping
and for ( « ( « 1 it is v = 1 (see Ref. [12]).

[15] The narrow window of ( where all the fixed points are
hyperbolic is connected with the metastability region in
the first order BSF phase transition.

[16] The prediction of the SSF state in Refs. [2,3] is not due
to the continuum approximation, but to an inconsistent
procedure for the boundary conditions. The correct treat-
ment requires that the solution of the equation for n & 1

satisfies the equation for n = 1, while in Ref. [3] the
condition 4q = z /2 was imposed.

[17] The analysis of the energy of the nonuniform configura-
tions shows that there is a gain with respect to the AFgt
state only in the region of the map with P2„z C [0, z']

and s2~ y ( O.

[18] Such a high precision turns out to be necessary in order
to obtain in the spectrum of excitations a zero frequency
Goldstone mode within at least six significant figures [L.
TraUori et al. (unpublished)].

[19] J. Villain and J.M. Loveluck, J. Phys. (Paris) 38, L77
(1977).

[20] J.A. Borchers et al. , Phys. Rev. Lett. 70, 1878 (1993).
[21] C.A. Rsznos et aL, Phys. Rev. Lett. 65, 2913 (1990).
[22] Z.Q. Qiu et aL, Phys. Rev. B 45, 2252 (1992).

1928


