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Study of an Ising Model with Competing Long- and Short-Range Interactions
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A classical spin-one lattice gas model is used to study the competition between short-range ferromag-
netic coupling and long-range antiferromagnetic Coulomb interactions. The model is a coarse-grained
representation of frustrated phase seapration in high-temperature superconductors. The ground states
are determined for the complete range of parameters by using a combination of numerical and analytical
techniques. The crossover between ferromagnetic and antiferromagnetic states proceeds via a rich struc-
ture of highly symmetric striped and checkerboard phases. There is no devil's staircase behavior be-

cause mixtures of stripes with diff'erent period phase separate.

PACS numbers: 75.10.Hk, 71.45.Gm, 74.20.Mn

Systems with competing interactions often show re-
markably complex phase diagrams, even though they
have quite simple Hamiltonians. In this Letter we study
a model of this type, which was suggested by the physics
of frustrated phase separation in high-temperature super-
conductors [1], although it is independently of consider-
able interest as a problem in statistical mechanics. The
Hamiltonian is given by

H KQSJ —L QStS3+ + g
&ij& 2 i &j ~ij

where L,Q) 0, and Sl + 1,0 specifies the charge at
site j of a two-dimensional square lattice [2]. Evidently,
this model is equivalent to a spin-one Ising model with a

long-range antiferromagnetic Coulomb force of strength

Q competing with a short-range ferromagnetic interaction
of strength L, so we shall use spin terminology in discuss-

ing the phase diagram. The quadrupolar field K controls
the concentration of sites at which Sj 1. For applica-
tion to high-temperature superconductors, SJ is a coarse-
grained variable, representing the local density of mobile

holes [1]: each site j represents a small region of space
for which Sl +1 and St —

1 correspond to hole-rich

and hole-poor phases, respectively, whereas Sl 0 indi-

cates that the local density is equal to the average value.

In this realization, the fully phase separated state has

Sj 1 and is ferromagnetically ordered, with Sj +1 in

one-half of the volume and Sj —1 in the other, so as to
maintain overall charge neutrality. This interpretation is
diff'erent from that used in the more familiar spin-one Is-
ing model [3] of tricritical phenomena, in which quadru-
polar ordering St 0, 1 corresponds to phase separation.
As we shall see, the long-range Coulomb interaction does
not destroy all semblance of phase separation by forcing a
state with SJ 0 for all j. On the contrary, provided
there is a short-distance clustering suScient to justify our

coarse-grained model, the ground state is typically inho-

mogeneous and shows a rather rich phase structure as the

strength of the Coulomb interaction is varied [4]. In par-

ticular, striped phases of different period are the most

prominent feature of the phase diagram.
The behavior of the model cannot be uncovered by

purely analytical or purely numerical means. The prob-

lem is that the Coulomb interaction is di%cuit to handle

analytically, whereas in a numerical study the energy
differences between adjacent phases often are smaller

than finite-size corrections. Accordingly, the zero-tem-

perature properties of the model in the thermodynamic

limit were determined by a combination of the two tech-

niques. First of all, a general survey of the ordered

phases was made by using a Monte Carlo simulation to

heat up the system, followed by single spin flip dynamics

to cool it to zero temperature. In this way it was found

that the ground states of finite systems consist of simple

periodic structures: The pure Coulomb interaction favors

a Neel state, but as Q decreases the crossover to the fer-

romagnetic state proceeds via a series of striped phases of
ever increasing width. Consequently, we were able to as
sume specific periodic ground state configurations for

which the energy could be written

KE~@ LE„„+(Q/2) E—coul

where the self-energy E g, the nearest neighbor energy

E„„,and the Coulomb energy Ec,„lare constants, charac-
teristic of the assumed state. It was then straightforward

to obtain the phase boundaries as straight lines in the

(Q/K, L/K) plane by comparing the energies of the

diff'erent configurations. As explained belo~, Eg,„~may

be reduced to a finite sum which may be calculated nu-

merically to arbitrary accuracy. The other two constants

may easily be evaluated analytically for each given

configuration.
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FIG. 2. The half-width m of a striped phase plotted versus

4L/Q for K 0.
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FIG. 1. Types of ground states. (a) Phases consisting of
stripes of m up and m down spins. (b) Checkerboard phases of
size (2&2n). (c) Stripes with one row of zeros.

In order to describe the phase diagram obtained by this
procedure, the periodic states will be characterized as
(M, x M„)phases, where M and M„arethe sizes of the
unit cell in the x and y directions, respectively. Thus the
Neel state is a (2X2) phase, whereas a phase consisting
of positive and negative vertical stripes each of width m,
as shown in Fig. 1(a), corresponds to (2m&1) for m

1,2. . . . . The checkerboard phase shown in Fig. 1(b) is

specified by (2&2n).
First consider K 0, for which the model has only one

free parameter Q/L. There are no stable phases contain-
ing macroscopic numbers of sites with average spin equal
to zero. When v L/Q is decreased from infinity to 0.355,
the system passes through a succession of striped phases,
from m oo tom 1, as shown in Fig. 2. If 4L/Q is de-
creased further, the system passes from (2X 1) to the
N eel state (2 x 2) via a series of (2 & 2n ) checkerboard
phases, illustrated in Fig. 1(b). This second staircase is

much narrower, being confined to a region 0.33 & VL/Q
(0.35. A thorough study did not reveal any intervening

phases between the regular stripes and the (2X 2n)
checkerboards. This wil) be discussed in greater detail
later.

If K&0, states containing zeros are even less favor-
able, and the phase diagram is the same as for K 0.
This is no longer true when K is positive, and then it is
necessary to use two parameters Q/K and LlK to specify

2Nl

H g rr;rr;V(i —j), (3)

5.0

40

3.0

2.0-

1.0

0.0
0.0

000
000

1.0 2.0
Q/K

I

3.0 4.0

+—+-
-+-+

5.0

FIG. 3. Phase diagram for E&0. The structures of the
ground states are marked symbolically. The approach to the
L/K axis proceeds via an infinite sequenm of striped phases (not
shown).

the phase diagram. In this case, new phases consisting of
stripes of width 2m separated by stripes of zeros, as illus-

trated in Fig. 1(c), appear for Q/K and L/K small.
When Q/K and L/K are large, the phase diagram is simi-

lar to the case of K 0. The complete phase diagram for
K )0 is shown in Fig. 3.

Since the relevant states are doubly periodic with

periods M, and M„along the x and y directions, respec-
tively, it is possible to obtain a deeper understanding of
the phase diagram on the infinite lattice by reducing the
problem to an effective model within the (M, x M„)unit

cell. The argument will be presented for the striped
phases, which are of greatest interest here. They corre-
spond to M, 2m, M„ 1, and, in-cell, the model is a
one-dimensional spin-half Ising model on a periodic lat-
tice of 2m sites. The effective Hamiltonian may be writ-

ten
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where the spin variables take the values a; = ~ 1 and
V(i —j) is the eff'ective interaction within the unit cell.
The contribution Vc (i —j) from the Coulomb interaction
[the term proportional to Q in Eq. (1)] may be obtained
by using the Poisson sum formula to evaluate the poten-
tial due to the rows of charges along the y direction, and
then carrying out the sum over unit cells in the x direc-
tion:

Vc(j) —2ln sin
2m

+4 P P Ko(2nn(2ml„+j)) (4)

for j~0. Here Ko is the modified Bessel function of or-
der 0, and infinite terms have canceled in virtue of the as-
sumption of charge-neutral states. The first term in this
equation comes from the uniform component of the
charge distribution in a row, and it is the usual potential
between columns of charge or line vortices: When j=0,
it should be replaced by 2[In(m/n)+C], where C is
Euler's constant. The second term in Eq. (4) comes from
the finite wave vector components of the charge distribu-
tion of a stripe, and it gives the short-distance transient
contributions to the potential. For many purposes, this
term is numerically unimportant and may be omitted.

This formulation of the problem enables us to under-
stand the simple structure of Fig. 2, and to address the
question of whether there are additional more complex
ground states, possibly giving rise to a devil's staircase
[5], i.e., regions of the phase diagram in which any two

steps are separated by an infinity of extra steps. Bak and
Bruinsma [5] showed that for a one-dimensional Ising
model with an infinite range convex interaction, the aver-

age magnetization displayed a complete. devil's staircase
as the applied magnetic field was varied. For the problem
defined in Eq. (1), charge neutrality forces the average
magnetization to be zero. But a devil's staircase might
arise in the concentration of spin pips (i.e., adjacent spins

pointing in opposite directions) as its conjugate variable,
the ferromagnetic coupling L, is changed. Consequently,
a systematic study of the Coulomb energies within sub-

spaces S i with 2l spin slips was undertaken. For such a

subspace the near-neighbor energy per site is fixed and

equal to —LE„„(2l/m—2)L, and the Coulomb ener-

gies may be obtained from Eqs. (3) and (4) by using a

computer algorithm to generate states in the subspaces
S I. In practice, we considered all states with m ~ 13
(several hundred thousand states), and found that, when I
is a divisor of m, the ground state is given by a periodic
pattern of m/I up spins followed by m/I down spins

(stripes of width m/I). In other words, the spin fiips are
equally spaced. When I was not a divisor of m, the
ground state in the subspace S~ i separated into two

phases: one an extended striped phase of period 2p, the
other an extended striped phase of period 2(p+1), where

p ( I/m (p+1. For finite m, the energy of such a state
is higher than the energy of each of the two coexisting
phases because of a finite boundary energy.

According to this discussion it is clear that the ground
states are simply periodic, except possibly at the values of
L/Q for which the period jumps (as shown in Fig. 2)
where two phases may coexist. For the simply periodic
phases, m may always be chosen so that the ground state
for any L/Q has /=1, i.e., within the unit cell it is "fer-
romagnetic, " with total spin zero. From Fig. 2 it is also
clear that, in considering states with period up to 26, the
ground state has been identified for L/Q less than —50.
However, the same structure will persist for larger values

of L/Q, since the ferromagnetic state is favored by L. It
should be emphasized that these conclusions did not in-

volve a finite-size approximation: Equations (3) and (4)
are exact representations of the Hamiltonian for (2m x 1)
periodic states, and the computer algorithm was simply
used to carry out a systematic exainination of the states.

As we have seen, the possibility of a devil's staircase, in

which the states would consist of a mixture of the adja-
cent phases of period 2n and 2(n+1) [5], is pre-empted

by phase separation, and the transition from one periodi-

city to another is first order. A physical feeling for the

origin of the phase separation may be obtained by the fol-

lowing argument. In a phase of period 2n, each unit cell

may be regarded as a column of dipoles. It is straightfor-
ward to show from Eqs. (3) and (4) that the interaction
between dipoles pointing in the same direction is attrac-
tive. Moreover we find that, starting from a phase-

separated state, (1) it costs energy to transfer a 2n dipole
into the 2(n+1) phase and vice versa and (2) there is an

attractive interaction between two 2n dipoles in the
2(n+1) phase and vice versa. Consequently, the phase

separated state is stable, and, conversely, the mixed state
tends to phase separate.

Once it is recognized that the ground states are fer-

romagnetic within the unit cell, it is possible to proceed
analytically by evaluating the energy for each (2mx 1)
unit cell and minimizing with respect to m for fixed Q/L.
Using Eqs. (3) and (4), it is straightforward to show that
the Coulomb contribution to the energy per site for the

ferromagnetic unit cell may be rewritten:

m —
1

+Ecogi(|n)-Q g 1
— &c(n)++V, (0).

2 pg~t m 2

For large m, the leading contribution to F.(0 f may be ob-

tained by changing the sum to an integral and using Eq.
(4):

~ l/2
+Ec,„i(m)— 4Qrn „dx—(l —4x) ln sin(nx) .

Here the Ko terms have been omitted because they turn

out to be numerically unimportant. On evaluating the in-

tegral and adding in the near-neighbor contribution, the

total energy per site becomes
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E (m )-0.&5Qrrt+ 2L/m+ e i, (7)

where c~ is a function of the parameters of the Hamil-
tonian but is independent of m. If we fit ci, the error in

this expression is less than 1.5% for m &2, and the
Coulomb energies are linear in m for essentially the
whole range of interest. The period of the ground state
for any L/Q may now be obtained by minimizing E(m)
with respect to integral values of m. Then the transition
from m to m+1 occurs when E(m) -E(m+1) or

m (m+ 1) 2.35L/Q . (&)

E(rrt) 0 &5 Q L 4irt —3 +
K K K 2m+1

(9)

where c2 is a constant. Following the same argument as

This expression is in excellent agreement with Fig. 2 over
the whole range of L/Q. A good approximation to the
solution of Eq. (&) is m —

& +1. 534L/Q, for the
relevant values of v'L/Q. This expression shows why the
points at which the value of rn jumps lie on a straight line
and the steps are of length 0.63, independent of m.

Stability of the ferromagnetic unit cells for all m re-
quires that the "compressibility" (or, equivalently, the
second derivative of the total energy with respect to the
volume) is positive. Since m is an integer, this condition
is equivalent to the requirement that the second difference
of the total energy 2mE(m) with respect to m is positive.
It is evident that this condition is satisfied by the approxi-
mation (7). We have verified numerically that the condi-
tion is also satisfied for small m, where there are small
deviations from (7).

It also is possible to derive an effective one-dimensional
potential for the phases containing zeros, as shown in Fig.
1(c). Once again the Coulomb energies Ec«i(rrt) of
these phases are linear in the stripe width for large m:

before, it is easy to show that there is an in6nite set of
stripes. The regions occupied by the new phases are en-

tirely determined by the constants in Eqs. (7) and (9).
In conclusion, we have shown that a simple Ising model

with short-range exchange and a competing long-range
Coulomb interaction has an interesting and remarkably
complex phase diagram, which illustrates the conse-
quences of frustrated ferromagnetic order (or phase sepa-
ration in the "parent" model). It would be of some in-

terest to extend this study to finite temperature. In vari-
ants of the model considered here, the conclusion that the
ground states are inhomogeneous should persist, but the
ground state may not be simply periodic. In particular,
introducing quantum fiuctuations or allowing the charge
to be different for S; +1 and S;=—

1 should lead to
disordered states.
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