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Classification of Quantum Hall Universality Classes by Wi+ Symmetry

Andrea Cappelli
Istituto Nazionale di Fisica Nucleare and Dipartimento di Fisica, Largo E. Fermi 2, I-50125 Firenze, Italy

Carlo A. Trugenberger
Max Pla-nck Ins-titut fiir Physik, Fohringer Ring 6, D 808-05 Munich, Germany

Guillermo R. Zemba
Istituto Nazionale di Eisica Nucleare and Dipartimento di I'isica Teorica, Via P. Giuria 2, I-10i25 Torino, Italy

(Received 27 October 1993)

UVe show how two-dimensional incompressible quantum fluids and their excitations can be viewed
as 8'q+ edge conformal field theories, thereby providing an algebraic characterization of incom-
pressibility. The Kac-Radul representation theory of the Wz+ algebra leads then to a purely
algebraic complete classification of hierarchical quantum Hall states, which encompasses all measured
fractions. Spin-polarized electrons in single-layer devices can only have Abelian anyon excitations.
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The central idea in Laughlin's theory [1] of the quan-
tum Hall efFect [2] is the existence of tie dimensi-onal

incompmssiwe quantum fluids at specific rational values

p = veB/hc of the electron density (B being the external
magnetic field). These are macroscopical quantum states
with uniform density which are rendered particularly sta-
ble by an energy gap. We can think of them semiclas-

sically as drop/ets of liquid without density waves. The
absence of density waves causes the longitudinal conduc-

tivity to vanish while the Hall conduction is realized as
an overall rigid translation of the droplet, giving the Hall

conductivity o „=ve /h
Our program has been to characterize this picture by

a symmetry principle and derive accordingly the egec-
tive field theory for low energy excitations. Indeed, the
universality observed in experiments calls for an effective

theory approach at long distances, while the extreme pre-

cision of the rational values of v suggests that dynamics
is constrained by symmetry Both facts. suggest an anal-

ogy with two-dimensional critical phenomena, which are
classified by conformal field theories [3].

In earlier works [4], we already identified the natural
symmetry of classica/ incompressible fluids under area-

presertjing digeomorphisms, which obey the tu alge-

bra [5]. Actually, these transformations relate all pos-

sible configurations of droplets of incompressible fluid by
shape changes at constant density. Infinitesimal changes
yield edge excitations of the droplet [6], whose quantiza-
tion leads to a (1+1)-dimensional efFective conformal field

theory defined on the edge [7]. Moreover, the Laughlin
quasiparticle excitations with fractional spin and statis
ties (anyons) correspond to fractionally charged edge ex-
citations. These are the relevant low-energy degrees of
freedom. In a number of physically relevant examples

[4,7], we showed that they span highest-weight represen-
tations of the algebra Wq+ of qucntum crea-preserving
diffeomorphisms in the conformal theory. Wt+ is

therefore the symmetry algebra of the low-energy effec-

tive theory. Here we use the recently developed [8] repre-
sentation theory of Wq~~ to classify all possible Wi+~
conformal field theories on the edge of the droplet. This
construction provides a complete, purely algebraic classi-
fication of all universality classes of incompressible quan-

tum fiuids and leads to the identification of the quantum
numbers of the excitations.

We start by recalling the area-preseruing diff'eomor

phisms of the two-dimensional plane (z = x + iy, z =
x —iy) [4]. Infinitesimal transformations of the distribu-

tion function p(z, z) of the fluid are generated by t;he com-

is ~(", ) = po("+ / z"z via the Poisson brack
ets (f, g)pB

—= (i/pp) (Bf8g —8fBg), with 8 = 8/Bz,
8—:8/Bz, and po the average density. The generators

satisfy the classical algebra

which is usually denoted [5] by to . All classical "small

excitations" around a fluid ground state describing a
droplet with uniform density po are given by the basis

b p = cn, m(Z„,m, p)ps. As can be checked explicitly [4],
they correspond to density waves localized on the sharp

boundary of the classical droplet.
Given this fundamental role of to~ in the description of

classical incompressible fluids, it is to be expected that its
quantum extension R'~+, obtained by the substitution

ih(, )pB ~ [, ] (z -+ z, z —+ 8), plays a corresponding
role in the physics of quantum incompressible fluids.

That this is indeed so can be checked explicitly for

the simplest example of a quantum incompressible Quid,

the fully filled Landau level [4,9]. As was pointed out

by Stone [10], the incompressibility of this state follows

solely from the fact that it behaves as a 6lled Fermi sea
in the coordinate plane of the electrons (as opposed to
momentum space) .
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The field operator for spin-polarized nonrelativistic
planar electrons subject to the uniform magnetic field
and confined to the first Landau level is given in the sym-
metric gauge A; = B/2e'ix& by 4(x) = P& p ai, g&(x),
where

1 1 s A' ( ]z]2)

( 2e2 (2)

(3)

where

WaF (8) = ) v'27r

(Ry 2I+2lc+i
1I

Rjs-
( i')

Q2n.

(L + k)! (4)'R~=(L,+~)e~
'

and we introduced the shifted operators bg = al.+i, .
The coefBcients cI, are approximated by cI,
exp —(k —p) /2L for I ~ oo and provide, there-
fore, a smooth ultraviolet cutofF ]k] ( v L for the sum
over the angular momentum k. To leading order in 1/L
we can remove this cutofF thereby obtaining the effective
relativistic chiral fermion field

F(8) —= lim v% FR = ) e'(" "! bi, (5)R-+oo v'2x
„

and we denote by E = g2/eB the magnetic length
(we use units 5 = c = 1). The coefficients in the
above expansion are fermionic Fock annihilators satisfy-

ing aI„a& ——6I,~, wit a l other anticommutators van-e

ishing. The fully filled Landau level is a configuration in
which all angular momentum eigenstates Qg are occu-
pied up to (and including) a maximal angular momentum
I: ~A} = aptati a&t[0}, where ]0} is the Fock vacuum.
Since the single-particle angular momentum eigenstates
Qi, are peaked around radii roc = Ey k, the state ]0}con-
sists of a circular droplet of radius approximately given
by E~L (the boundary is smoothed out by quantum ef-
fects). This ground state is quantum incompressible in
the sense that compressions of the droplet are forbidden
by an energy gap. Actually, these would lower the total
angular momentum by promoting at least one electron
to the next Landau level.

At the quantum level, the boundary density waves of
the classical droplet picture become "neutral" particle-
hole excitations across the Fermi surface. These are the
edge excitations [6] to be included in the low energy lo-ng-
distance efFective theory, valid in the thermodynamic
limit L ~ oo. The idea is that to leading nontrivial order
in this limit, the filled Landau level can be substituted
by an infinite D&ac sea, as we now show [7]. We first
pick a radius R such that (R/E) = I +p, 0 ( p ( 1 and
we then consider the field operator of the first Landau
level restricted to the edge r = R, rewritten as follows:

( 2 li/4
4 (r = R, 8)—:

~ ~

e'! +"1 F~(8),q~P)

in 1 + 1 dimensions (Weyl fermion), with boundary con-

ditions determined by the "chemical potential" 1u.

Next we define the Wi+ generators in the relativistic
theory [they can equivalently be obtained by quantization

of the l:~'|II in the Landau level problem and by the limit

(5) [4]):
2'

«F'(8) t e-*"'(i~.)' t F(8)
0

) p(k, n,j;p) biI „bi,, (6)
A;=-oo

where f $ denotes an ordering of the first-quantized oper-
ators exp( —i8) and iBs to be

specified

belo, and such

that V~ = V~„.The coefficients p(k, n,j;p) are jth
order polynomials in k whose specific form depends on
the choice of ordering. Let us now compute the algebra
satisfied by the V„"s.Given the standard anticommu-
tation rules of the fermionic operators F and Ft, the
operator part of [V„',V~~] reproduces the corresponding
first-quantized commutator. We thus obtain

V„',V~ = (jn —im) V~++~„+q(i,j,m, n) V~+s„

+b„+ p c(n, i, j) . (7)

The first term on the right hand side (r.h.s.) repro-
duces the classical algebra (1) by the correspondence
l:; „;-+ V„',and identifies (7) as the algebra Wi+
of "quantum area-preserving difFeomorphisms" [5]. The
second and higher operator terms on the r.h.s. arise at
the quantum level because the V„'are polynomials in Bs.
Finally, the c-number terms c(n, i, j) represent the rel-
ativistic quantum anomaly. This follows from the renor-
malization of the charges Vp . Since we want to mea-
sure charges with respect to the original filled Landau
level, we adopt the standard relativistic normal ordering
procedure of writing all annihilators to the right of cre-
ators. Thus, it can be shown [11) that the coefficients
c(n, i, j) depend only on the first-quantized ordering f f
and on p. In particular, they can be made diagonal,
c(n, i, j) = c(n)b's, for a specific ordering. Independently
of our explicit construction, it has been shown [12] in
general that there is a unique central extension for the
algebra (7) in the (1 + 1)-dimensional relativistic field
theory.

The simplest cases of Eq. (7) are

V0, V0 =no„
1 0 0V„,V =-m V„

V„',V' =(n-m)V„'+ + —'(ns-n)b„+ p, (8)

with c = 1 and where p = 1/2 has been chosen in
order to cancel the anomaly in the second commutator
[note that Eqs. (8) are independent of the first-quantized
ordering ) $]. Equations (8) showthat V~~ and Vi are
the oscillator and conformal modes, respectively, and the
central charge is c = 1, as expected for a Weyl fermion.
The index i+ 1 is the conformal spin of the V„'currents
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and n is the moding.
The quantum incompressibility of the 6lled Landau

level in the limit I ~ oo can now be characterized
by the infinite set of conditions

V„'iA) = 0, Vn & O, i &0.
In mathematical terms [3], this equation states that the
filled Landau level is a c=1 highest-ureight state of the
Wi+ algebra with weights Vo [0) = 0, Vi & 0 . More-
over, all neutral excitations generated by polynomials of
V„'(n ( 0) applied to [0) make up a unitary irreducible
highest vreight representation of Wi+

There exist also other excitations, corresponding to
quasiholes and quasiparticles in the bulk of the droplet
[1]. Actually, due to incompressibility any excitation cor-
responding to a local density deformation in the bulk is
transmitted to the edge, where it is seen as a charged
excitation. In our algebraic language, it ean be shown
that these charged excitations, together with their towers
of neutral excitations, correspond to further irreducible
highest-weight representations [11]. All these highest-
weight representations define a Wi+~ conformal field

theory, in short, a Wi+ theory. This is the theory
of the free Weyl fermion in the case of the filled Landau
level discussed so far.

We are thus naturally led to characterize all hoo-

dimensional incompressible quantum fluids kerrith their
edge excitations as Wi+ theories [actually, analogs
of the conditions (9) are known [11,13] for the Laugh-
lin and hierarchical fluids]. This is a powerful classifi-
cation scheme, given that all highest-weight representa-
tions of Wi+~ have been recently obtained by Kac
and Radul [8]. Specifically, we are interested in clas-
sifying two-dimensional incompressible fluids by their
filling Paction v and by the charge and spin (statis
ties) quantum numbers of their quasiparticle ezcitations.
These are the eigenvalues of the oPerators (—Voo) and Voi

in the highest-weight representation corresponding to a
given excitation. Note that the charges of bulk excita-
tions are —Vo, with opposite sign to their edge coun-
terparts. Moreover, the statistics 8j7r, computed from
monodromies along the edge, is twice the spin.

The results of Kac and Radul relevant to our construc-
tion can be conveniently rephrased in our basis as follows.
All unitary, irreducible, highest-weight representations of
Wi+~ are completely characterized by a m-dimensional
multiplet of "charges, " the "vector" 8, giving the anomaly
c and the highest weights Q and J of —Voo and Voi, re-

spectively,s:—(s cR, I=1, . . . , m), c=m, meZ+,
Q = s +s + . +s
J =

2
(s ) + (s ) + . . + (s )

1 2 (10)

According to the rules of conformal field theory [3], a
Wi+~ theory is defined by a set of these representations
which is closed under the "fusion algebra, " in physical
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terms the making of composite excitations. The "fusion
rule" for Wi+~ is the addition of charge vectors s, as in
the well-known case of the affine subalgebra (8), because
the unitary representations of these two algebras are in
one-to-one correspondence [ll]. Therefore, a consistent
set of representations is given by a lattice I' generated by
m "elementary" excitations v, :

p„' = ) A» (V„')', A e GL(m, R) . (12)

The matrix A is operationally determined by the chiral
couplings of the physical charge densities to independent
electromagnetic fields Al on the edges,

H =Ho+H, =)
~ (Vo) + dgplAI ~,

pI~e t~ ) I sin(s tu/8)-( vl) 1 . . r r

Rl j 2n.

~' -=(~.+v'~s) [„„,. (13)

In Eq. (13), Ho describes the relativistic chiral dynamics
of the edge modes provided by the confining boundary
potential [6], which is parametrized phenomenologically
by the effective velocities v on the m edges at radii Rl.
Here we consider only chiral incompressible fluids, for
which all vI have the same sign; the generalization to
both chiral and antichiral edges is straightforward.

The chiral anomaly generated by the coupling (13) is
completely fixed by the current algebra (8) and Eq. (12).
It determines the charges created by the electric fields EI
out of the vacuum:

) A@Inj
J

+ d8
Ch —F

0 27'

(14)

vrhere the n J are integers due to the topological quantiza-
tion of the electric Beld in 1+1dimensions, and represent
the number of vortices (quasiparticles) created in the Ith
component of the fluid. This spectrum of (V& ) must co-I

ineide with the spectrum given by the lattice (ll), which
identifies A;q = (v, ) . We have shown that, given the
lattice I', the anomaly Fixes the de6nition of the physi-

s = +,.v, , +,. ~Z, i=1, . . . , m . 11
i=1

These results tell us immediately that a level c = m in-

compressible quantum fluid is a composite with m edges.
Indeed, ac = m Wi+~ representation looks like asuper-
position of m c = 1 8'1+ representations, for vrhich

the charges can be written as V„=Ql i (V„). The

crucial point is that the (Vo) need not be the appropri-
ate basis describing the Jrhysical charge operators pal on
the m edges. These are generically given by
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cal charge (12), which in turn imphes an "interaction"
among the edges with respect to the diagonal basis (10).

The spectrum of physical charges follows directly from

(12) and (14),

q —= ) p,'= ) K;.—,'n, , (15)

where we call K~. ——Q& vI vI the metric of the lattice.
The spin spectrum follows similarly from (10) and (ll):

(16)

Equations (15) and (16) give us the charge, spin, and
statistics of the quasiparticle excitation corresponding to
any point of the lattice, parametrized by the vorticity
components n; E Z.

Finally, the filling fraction v is easily computed by ap-
plying a homogeneous tangential electric field EI = E,
for all I The r.ate of total physical charge created by the
anomaly on the edge is Bi (—Q) = EP, —K, , which
corresponds to a radial fiux of charge, i.e., to the Hall
current [7,10]. This identifies the filling fraction ss

i =) K, i. (17)

We thus reach the conclusion that all two-dimensional
incompressible quantum fiuids are classified by an integer
level m (the central charge of Wi+~ ) and a real positive-
definite symmetric matrix K i describing the metric of
the representation lattice. Note that our approach can-
not predict gaps and excitation energies. Nevertheless,
a stability principle based on maximal symmetry of K
selects the most prominent fractions observed in experi-
ments [11].

In applying the results (15)—(17) to the quantum Hall
effect, we should further require the presence of m exci-
tations with unit charge, fermionic statistics, and integer
statistics relative to any other excitation, representing
the original electrons in each of the m components of the
fiuid. This imposes that K has integer entries, odd on
the diagonal [14].

The results (15)—(17) are in agreement with the general
hierarchy obtained by Frohlich, Wen, and Zee [14] by an
Abelian Chem-Simons efFective field theory. Examples
of K matrices for the best known filling fractions have
been discussed by these authors; we refer to them for a
full discussion of the physical consequences of Eqs. (15)—
(17).

While following the same physical approach of describ-
ing the universal long-distance properties, the methods of
Ref. [14]differ substantially from ours. They started from
an appropriate choice of effective Geld theory, whereas we
derived our results from purely algebraic considerations,

after having identified the symmetry principle governing
the phenomenology of the quantum Hall efFect. A di-
rect relation between the two approaches can be found a
posteriori. The (1 + 1)-dimensional rnco-mponent chiral

boson, compactified on the torus T = R /I', gives an
explicit realization [11]of all (rational) Wi~ theories,
and it is also the edge degree of freedom of the Abelian
Chem-Simons topological theory on a disk [6).

Moreover, our classification shows that the results

(15)—(17) are complete. We can in fact exclude fur-

ther possible efFective theories: orbifold compactifica-
tions of the chiral boson [3] lead to excitations with ill-

defined charge Vg; non-Abelian Chem-Simons theories
possess excitations with non-Abelian statistics which are
described by edge theories with noninteger central charge
[6]. Both possibilities cannot realize the Wi+~ symme-

try.
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