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Novel Symmetry of a Random Matrix Ensemble:
Partially Broken Spin Rotation Invariance
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A novel type of a random matrix ensemble originating from a partial breaking of the spin rotation
invariance is considered. Universal conductance Buctuations, density of states correlation function,
and the persistent current in mesoscopic rings are studied for this type of symmetry of a disordered
system.
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In 1962 Dyson [1]proposed a classification of ensembles
of random matrices according to a symmetry of a physical
system. Originally introduced to describe a spectrum of a
complex nucleus it can be applied to disordered electronic
systems as well. This field attracted considerable interest
from physicists due to the development of the scaling
theory of localization [2—4] and, later on, in connection
with the investigation of mesoscopic systems [5—9].

The key point of this classification is the invariance (or
noninvariance) of the Hamiltonian with respect to the
time reversal (T) and spin rotation [SU(2)] symmetry.
Correspondingly, three types of ensembles are known.

(1) Neither T nor SU(2) is broken. This corresponds
to an electron subjected to a random potential in the
absence of external magnetic field, magnetic impurities,
and spin-orbit interaction.

(2) SU(2) symmetry is broken, T is preserved. This
situation takes place in a system with the spin-orbit cou-

pling in the absence of magnetic field.

(3) Time reversal symmetry is broken that may result
from the external magnetic field or magnetic impurities.

These three ensembles are called orthogonal, symplec-

tic, and unitary, respectively.
In the present Letter we introduce one more possible

symmetry of a random matrix ensemble, which implies

the specific properties of the corresponding physical sys-

tems. Our finding is that while the time reversal symme-

try is not broken, SU(2) symmetry may be broken not
completely, but only partially, down to U(1). This situa-

tion takes place when the random Hamiltonian contains

only one (for instance, o, ) of the Pauli matrices. Phys-
ical realization of this symmetry is related to a type of
the spin-orbit coupling which arises most naturally in low

dimensional systems.
If the electron momentum is quantized in the z direc-

tion, perpendicular to a plane of the 2D electron gas,
then the spin-orbit skew scattering is described by the
matrix element [10]

+p,p' =~&z[P x P]~g (1)

with a being the spin-orbit constant, p and p' the mo-

menta before and aker the scattering, respectively. If the

material possesses the inversion center and the electrons
are confined to two dimensions by a symmetric poten-
tial, then (1) is the only allowed spin-dependent interac-
tion in a system. As a consequence the z projection of
the electron spin is conserved, despite of the presence of
spin-orbit scattering. It is the first example of partially
broken spin rotation invariance. Another one is the quasi
1D system made of a material without the inversion cen-

ter (e.g. , GaAs). In this case the size quantization in two

directions takes place [11,12] and the electron Hamilto-
nian contains a spin-orbit coupling term of the form

+so = P&zpz (2)

where r and r' are the spatial coordinates, z is a complex
number, and z' denotes the complex conjugate. Table
I presents the form of the spin blocks for all types of
symmetry of a random matrix ensemble. The 6rst row in

the table corresponds to the Dyson orthogonal ensemble,

the third to the symplectic, and the fourth and the sixth
to the unitary one. The second row describes the newly

introduced ensemble with a partially broken spin rotation
invariance. The same spin symmetry but in the absence
of the time reversal invariance gives rise to the ensemble

presented in the 6fth row. This situation may occur when

the magnetic field is present in addition to the spin-orbit
interaction of the type (1), (2).

Now we are going to study several properties of the new

ensemble. We start from the consideration of the univer-

sal conductance fiuctuations variance var(g), which we

where P is a constant of the spin-orbit splitting of the
conduction band. This term has no consequences in the
case of a wire, when it can be removed by a gauge trans-
formation, but is important for a ring.

Let us compare the symmetry properties of a Hamilto-
nian containing a term of the type (1), (2) with those of
the known matrix ensembles. Because of the symmetry
restrictions the [2 x 2] blocks (in the spin space) of the
full Hamiltonian matrix '8 in the case (1), (2) take the
form
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TABLE I. The form of spin blocks of a random Hamilto-
nian and the relative value of the conductance variance for
diferent types of symmetry of ensemble. In the second and
third columns the sign "+" means that the corresponding
symmetry is preserved, the sign "—"denotes the complete
symmetry breaking, and U(1) stands for the partially broken
spin rotation invariance.

Ensemble T SU(2)

+ U(1)

U(1)

Spin blocks

aOI
qO a)

(&z 0 ))
(0 z')

Zg ZQ

Z'2 Zg

/'z 0&

&z1 Ol
I 0 z2)

Z]. ZQ

Z3 Z4

Relative var(g)

&(a,o)~
Dq

+SO

P&~~& (q) =1. (4)

Here D is the diffusion constant, r, 1 = trva2([p x p']z)
is the spin-orbit dephasing time (the angular brackets
denote the averaging over the Fermi surface, v is the
single electron density of states), the momentum q =
p~ + pq, pq q being the particles momenta, the upper
(lower) sign refers to the Cooperon (diffuson) propagator.
The eigenvalues of Eq. (4) can be written as

calculate for the two-dimensional case (1). The leading
contribution to the conductance fluctuations at l/L « 1,
k~l && 1 (l being the mean free path, L the system
size, kF the Fermi momentum) is given by the sum of
diagrams which are generated systematically by start-
ing with two concentric loops connected by impurity lad-
ders and inserting the two current vertices in all possi-
ble ways [9]. Every diagram contains either particle-hole
ladders (difFusons), or particle-particle ladders (cooper-
ons). The contribution of each diagram to the variance
is given in general by the sum originating from four in-

dependent channels (zero total spin channel, and three
channels characterized by the total spin equal to unity
with different values of the spin projection) The t.o-
tal spin S& & is a sum of the electron spins 1o1 and
s1o 2 for the Cooperon and is a difference of the spina for
the diffuson: S&+ +& = (n1 + cr2)/2. The total number
of channels for the diffuson and Cooperon diagrams is
therefore equal to 8.

In case (1) the equation for the Cooperon P& & (diffu-
son P&+&) propagator in the momentum representation
has the form

1
P0,0(q) = P1,o(q) = D,

1
P1,1(q) = P1.-1(q) =

Dq'+~ ' (6)

where the first index of P corresponds to the value of the
total spin, the second to the value of its projection on
the axis z. We see that if 1/t~ && 1/r1„7I, = L /D, the
two (of four) channels of propagation are suppressed for
both the Cooperon and the difFuson and the variance is

reduced by a factor of 2 in comparison with the orthog-
onal symmetry case. Therefore, var(g) is 2 times larger
than for the symplectic ensemble corresponding to the
usual spin-orbit scattering case.

In the presence of magnetic field H &) H, = hc/4eDt I,
perpendicular to the 2D plane all the Cooperon chan-
nels are suppressed and the conductance fluctuations are
reduced by an additional factor of 2. This situation cor-
responds to the random matrix ensemble presented in

the fifth row of Table I. Let us notice that the same sym-
metry occurs in the case of a very strong magnetic field

H » H, = 5/~r, gp (g being the electron g factor, p the
Bohr magneton), applied to a system without spin-orbit
interaction [7]. For such fields not only orbital magnetic
field effect but also Zeeman splitting should be taken into
account that breaks the spin rotation symmetry down to
U(1). However, in our case this kind of spin symmetry
breaking holds already in the absence of magnetic field
due to the spin-orbit coupling. Consequently, the "spin"
magnetic field H )) H, perpendicular to the 2D plane
does not change the symmetry of the system as com-
pared to the orbital one H » H, . Meanwhile, in-plane
spin magnetic field lowers the symmetry of our ensemble
down to a symplectic one (third row of Table I) in view
of the absence of the orbital effect. The relative value

for var(g) for all the symmetry types is given in the last
column of Table I. Let us note that this value is inversely
proportional to a number of independent real variables
parametrizing the 2 x 2 spin blocks of the Hamiltonian.

Another interesting property of the new ensemble is
the absence of the one loop weak localization correction
to the conductivity [10] since the value

1895
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P00+ P10+ Pl 1+ P1 —1t (7)

determining the quantum correction is not divergent in
the limit q -+ 0.

Consider now the implications of the new symmetry in
the case of a 1D ring with the spin-orbit coupling term
(2) in the Hamiltonian. The physical quantity which is of
interest in such a system is the persistent current [13—15]
induced by the Aharonov-Bohm magnetic flux O'. The
averaged current is given by [16]

I (@)= —
2 gy((b&)')P=&P)

where b, is the mean level spacing, p is the chemical
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potential, and angular brackets stand for the disorder
average. ((6N)z) is the number of particle variance in the
grand canonical ensemble related to the level correlation
function K(ti, Ez) = (p(ci)p(e2)) —(p(Ei))(p(t2)) [p(t)
being the level density] by

P

((6N) ) = dtidEgK (Ei, 6g) .
0 0

To the leading order of the perturbation theory

(9)

K (6i, 6z) =
z Re ) [Ps s (q, 6i —tg)(D)z

2r'

Applying the periodic boundary condition for a ring of a
radius r, we have q, = n/r with n = 0, kl, k2, ... and

1
Pp, p(n, u)) = Pi,p(n, ~) =

Dfl T + l(d
(12)

+ Ps,s. (q ei —~z)].(c)z

Equation (10) is the result of the summation of the usual
diffuson and Cooperon diagrams [7]. The Cooperon (dif-
fuson) propagator in case (2) is infiuenced by the effective

spin vector potential A, ' = 2PmS, ' [11,12]:

[D(q+ Ai~ ~~)'+ i~]P~~ ~&(q, ~) = 1.

with E, being the Thouless energy.
Let us note that the current I(4) has the nonzero limit

value as 4' + 0. In view of the antisymmetry relation

I(4) = I(—4)—that means an occurrence of a jump of
I(4) at this point. The origin of this quantum jump
is the level crossing at C = 0 due to removal of the
Kramers degeneracy by the Aharonov-Bohm magnetic
field. This phenomenon was considered in detail in [18]
(see also [19]) for the generic spin-orbit interaction. In
[18] the crossover from the symplectic ensemble to the
unitary one occurs with switching on the magnetic Hux.

Our case is characterized instead by a crossover from the
second to the fifth ensemble of Table I. Consequently,
the exact form of the level correlator and the persistent
current I(4) in the crossover region should be different
from those of [18], although the parametric dependence
remains the same.

The density of states correlation function at 4 = 0,
4 = +PmrC p and away from the transition regions can
be expressed through the corresponding two-level corre-
lation function for the Gaussian ensembles. Namely, let
us consider the normalized two-level correlator Rz(r),

Rz(r) = AzK(e, e+ rA).
1P yi( inn)= 2Dr 2 (n + 2Pmr) + i~

(l3) Then, at 4 = 0 (i.e. , for the ensemble 2 of Table I)

R2(r) = R2GUE(r/2),

Equation (ll) is valid at 4 = 0. For nonzero Aharonov-
Bohm Hux we should substitute q, + e@jn rc for q, in the
equation for the Cooperon, while the diffuson remains
unaffected. Therefore n in the Cooperon channel should

be replaced by n + 24/Cp, Cp = hc/e being the Hux

quantum. Only the Cooperon channel contributes to the
persistent current given by (7)—(9). Using (10) we obtain
the following result:

2nO . (4
)

I(4') = 2cot + ) cot2vr
~

+/mrs
~

where R2GUE is defined for the Gaussian unitary ensemble

[1] without spin degrees of freedom. Therefore, the level

statistics for the ensemble 2 is the same as for the unitary
one, although the symmetry is essentially difFerent. At a
value of 4' far enough from the points 4 = 0, +PmrC'p
the symmetry of the system is described by the direct
product of two unitary ensembles corresponding to two
projections of spin (ensemble 5) and we get

(18)

(14)

The first term in brackets originates from S, = 0, the
second from S, = kl.

In the vicinity of the points 4 = 0, 4' = +PmrC p/2
where (14) diverges, it loses its validity. This is related
vrith the fact that one of the Cooperon channels becomes
almost massless in these regions. The appropriate ap-
proximation in such a situation is to take into account
the zero spatial mode (with q = 0) exactly rather than
to consider all the modes perturbatively. It can be done
by using the supermatrix nonlinear a model. In the case
of the absence of the spin-orbit interaction this calcula-
tion was performed in [17]. Such a consideration modifies
the expression (14) in the vicinity of the singularities. As
a result the current in three regions is of order of

Finally, at 4 = +PmrC p we obtain

Rz(r) = — RzG (r/2) + Rz (r/2),GUE (19)

1
K(~i, ~g) =-

2m' („~,)' (20)

where GOE means the Gaussian orthogonal ensemble.
In these points the subsystems edith difFerent signs of
the spin projection belong to the diferent universality
classes: one to the unitary class and another to the or-
thogonal one.

The asymptotic behavior of the level correlator
K(ei, e2) at ci —e2 » 4 is determined by the mass-
less diffuson and Cooperon modes. According to Eq. (9)
me get
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where' =4for 4 =0, 7 = 3 for I = +Pmr4o and

p = 2 away from these points. It is easy to see that these
expressions agree with the exact formulas (16)—(19).

In conclusion, ere considered a neer type of the symme-
try of a disordered system which originates from the par-
tial breakdown of the spin rotation invariance. This type
of symmetry may most naturally arise in a low dimen-
sional system with the spin-orbit interaction. The vari-
ance of the universal conductance fluctuations and the
asymptotics of the level-level correlation function are 2
times larger than for the generic spin-orbit interaction. In
the case of a quasi 1D ring the persistent current and the
density of states correlation function are shown to have
an unusual behavior with the variation of the Aharonov-
Bohm flux.
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