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Bethe-Ansatz for the Bloch Electron in Magnetic Field
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%'e present a new approach to the problem of Bloch electrons in a magnetic Geld, by making
explicit a natural relation between magnetic translations and the quantum group Us(sip). The
approach allows us to express the spectrum and the Bloch function as solutions of the Bethe-ansatz
equations typical for completely integrable quantum systems.
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where 4 = 2n $ is a flux per plaquette, P and Q are
mutually prime integers. In the most conventional Lan-
dau gauge A = A„,„~i.——O, A„= Cn the Bloch wave
function is

g(n) = e'" "@„.(k), @ = @ +q,

where n—:n = 1, ..., Q is a coordinate of the magnetic
cell. With these substitutions the Schrodinger equation

A peculiar problem of Bloch electrons in a magnetic
field frequently arises in many different physical contexts.
Every time it emerges with a new face to describe another
physical application [1—5] (i) it resembles some properties
of the integer Hall efFect [5], (ii) its spectrum has an ex-
tremely rich structure of the Cantor set, and exhibits a
multifructal behavior [4,6,7) (see also [8] for a review), (iii)
it describes the localization phenomenon in quasiperiodic
potential (see, e.g. , [8] and references therein), (iv) it
has been recently conjectured that the symmetry of the
magnetic group may appear dynamically in strongly cor-
related electronic systems [9,10].

In this paper we show that this problem (sometimes
called the Hofstadter problem) and a class of quasiperi-
odic equations are solvable by the Bethe-ansatz. We
made explicit a long time anticipated [ll] connection
of the group of magnetic translations with the quantum
group Uq(sly) and with quantum integrable systems. The
result of the paper is the algebraic Bethe-ansatz equa-
tions for the spectrum. Although we do not solve the
Bethe-ansatz equations here, we are confident that they
provide a basis for analytical study of the multifractal
properties of the spectrum.

The Hamiltonian of a particle on a two-dimensional

square lattice in a magnetic field is

H= 21, fll gf

(n,m)

Z) +g
gZl +

with

Q

, l =1, ..., Q —1 (6)
m=1, m, gl

q=e&

The solution of the model with anisotropic hopping [when
the coefficient in front of cos in Eq. (4) differs from 2] is
also available. It will be published elsewhere.

The quantum group symmetry is more transparent in
another gauge A~ = —

2 (n +n„), A„= z (n +n„+ 1).
In this gauge a discrete coordinate of the Bloch func-

tion Q(n) = exp(ip. n)@„(p), turns to n = n~ + n„
It is defined in two magnetic cells: n = 1, ..., 2Q, py =
(p +p„)/2 e [O, C'/2]. An equivalent form of Harper' s
equation (4) for Q„ is

e&2~ '"+c+os(2i@n+ 4C' —p )@n+i

+2e & '"+ cos(ziOn —44 —p )Q i ——Egn. (8)

turns into a famous one-dimensional quasiperiodic differ
ence equation ("Harper' s" equation):

e'"*Q„+i+ e '" @„ i + 2cos(k„+ nC)g„= E@„. (4)

The spectrum of this equation has Q bands and feels
the difference between rational and irrational numbers—if the fiux is irrational, the spectrum is a singular
continuum —uncountable but measure zero set of points
(Cantor set).

To ease the reference we first state the main result: It
is known that due to the gauge invariance, the energy
depends on a single parameter A = cos(Qk~) + cos(Qk„).
We find that the spectrum at A = 0 (midband spectrum)
is given by the sum of roots zt,

Q-1
E = iq&(q —q ') ) zl, (5)

/=1

of the Bethe-ansatz equations for the quantum group
Uq(sly),
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at the points z = q

@.= ~(q"). (10)

The wave function of a particle in a magnetic Beld
forms a representation of the gmup of magnetic transla
tions [1]:generators of magnetic translations

T~(i) = exp(iA, '+~) li)(i+ ~ I

form the algebra

Tjs = T p~ TnTm = q Tn+m~

TT =q2TT, TT z=q-2T zT (12)

with q given by Eq. (7). The Hamiltonian (1) can be
expressed

In the new gauge the midband A = 0 corresponds to
the point p = (zx, zx). [The doubling of period in com-
parison with original Harper's equation is artificial: using
a simple transformation (multiplying g„by e '+" /4) one
comes to an equation with coefficients of period Q.] The
advantage of this gauge is that the wave function turns
into the polynomial with roots zm,

Q —1

C(z) = (z-z ),
~ ~ 4 ~

m=1

L(u) =
uA —u D

e
uD —u 1A

R

(17)

Here u is a spectral parameter and R matrix is the L
operator in the spin 2 representation. It is given by
the same matrix (17) with elements: A = q~~', D =

1~
q & ', B = o+, C = o, where cr are the Pauli matri-
ces.

Finite-dimensional representations (except some rep-
resentations of dimension Q) of the U~(sl2) can be ex-
pressed in the weight basis, where A and D are diagonal
matrices: A = diag(qj, ..., q j). An integer or half in-
teger j is the spin of the representation, and 2j + 1 is
its dimension. The value of the Casimir operator (15) in
this representation is the q analog of (j + 1/2)2

j+1/2 —j—1/2 )
I

= [j+1/2]q. (18)

Representations can be realized by polynomials @(z)
of the degree 2j:

A@(z) =q jC(qz), Dq/(z) =qj4(q 'z), -
B@(z)= z(q —q ) q ~ @(q z) —q ~@(qz), (19)
C@(z) = —z-'(q —q-') '

C(q 'z) —C(qz) .

H=T +T +T„+T „. (13) This again is the q analog of the representation of the sl2
algebra by a difFerential operator:

The algebra U~(sl2) (a q deformation of the univer-
sal enveloping of the sl2) is generated by the elements
A, B,C, D, with the commutation relations [12—16]

AB = qBA, BD = qDB,

DC = qCD, CA = qAC,
A2 —D2

AD=1, [B,C] =
q —q

—''
The center of this algebra is a q analog of the Casimir
operator

d . /'. db d
Ss ——z——j, S+ ——zi 2j —z—~, S = —.(20)

dz ' ( dz)' dz

The dimension of our physical space of states is 2j+1 =
Q. This is a very special dimension when q2j+i = pl for
P odd (even). The Casimir operator (18) in this case is

c = —4(q —q ), for P odd,

(21)
c = 0, for P even.

fq A —q Di
q —q-' )

(15)

In this special case representation of the quantum group
can be naturally expressed in terms of magnetic transla-
tions

In the limit q ~ 1+ 24 (so-called classical limit),
the quantum group turns to the sl2 algebra: (A —D)/
(q —q i) -+ Ss, B~ S+, C ~ S, c —+ 82 + 1/4.

The commutation relations (14) are simply another
way to write the Yang-Baxter equation

R ',~; (u/u) Lg„,(u) I,b„,(u)

= L,i„(u)L,b, (v)R~g (u/u), (16)

where generators A, B, C, D are matrix elements of the
I operator

T +T „=+i(q—q ')B,
T +T„=i(q —q i)C,
T „T =kq A, T T„=kqD,

(22)

where the upper sign corresponds to an odd P and the
lower to an even P [representation of Uz(sly) in terms
of diferent but related %eyl basis can be found in Refs.
[17—20]]. It is straightforward to check that this repre-
sentation obeys commutation relations (12) and (14) and
gives correct values (21) of the Casimir operator (15).

The Hamiltonian (1) and (13) now can be expressed in
terms of the quantum group generators
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H = i(q —q ')(C+ B), (23)

whereas the Schrodinger equation becomes a difference
functional equation

i(z '+qz)iI(qz) —i(z '+q 'z)@(q 'z) = E@(z).

(24)

The original Harper's discrete equation in the form (8)
at the point p = (7r/2, ir/2) can be obtained from the
functional equation (24), by setting z = q' and @1 =
4'(q ). The advantage to use the extention of Qt to a
complex plane z is that the representation theory of the
quantum group guarantees that in a proper gauge the
extended wave function would be the polynomial (9).

In addition to representation (19) having the highest
and the lowest weight, in the special dimension qz~+i =
kl there is a parametric family of representations hav-

ing in general no highest or lowest weights [18,19]. The
parameter describes the anisotropy of the hopping am-

plitude in the Hamiltonian (1) and momentum k difFers

from the band's center. The Bethe-ansatz solution of the
anisotropic problem is also possible but requires much
heavier mathematical technique.

Among various methods of the theory of quantum in-

tegrable systems the functional Bethe-ansatz [21] seems
to be the most direct way to diagonalize the Hamiltonian
(23). It is simple. We know that the solution of Eq. (24)
is the polynomial

@(z)=
1 4 ~

m=1
(z —z ). (25)

Let us substitute it in Eq. (24) and divide both sides

by i'(z). We obtain

-1
= E. (26)

The left-hand side (l.h.s.) of this equation is a meromor-
phic function, whereas the right-hand side (r.h.s.) is a
constant. To make them equal we must null all residues
of the l.h.s. They appear z = 0, z = oo, and at z = z
The residue at z = 0 vanishes automatically.

The residue at z = oo is —iq + iq . Its null deter-
mines the degree of the polynomial.

Comparing the coefBcients of z on both sides of
Eq. (24), we obtain the energy given by Eq. (5).

Finally, annihilation of poles at z = z gives the
Bethe-ansatz equations (6) for roots of the polynomial
(9). We write them here in a more conventional form by
setting zi = exp(2y~),

cosh(2&pi —i4), sinh(pi —p + i 4)
cosh(2&pi + i 4 )

"-.
, sinh(pt —p —i 4 )

Harper's equation is just a representative (perhaps the
most interesting one) of the class of solvable discrete
equations of the second order

o 0 +i+b~4 -i —c @n = Et
where periodic coefficients obey a certain integrability
condition [22]. All of them may be obtained from a gen-
eral quadratic form of quantum group generators. Some
of these equations have direct physical interpretation.
Their classical version (q ~ 1) would be differential equa-
tions generated by quadratic forms of sly generators (20).
These differential equations are known in the literature as
"quasi-exactly-soluable" problems of quantum mechanics
[23,24] and in particular includes difFerential equations
for classical orthogonal polynomials. In turn some of the
discrete equations (28) generate a q analog of orthogonal
polynomials [25]. For example, the zero energy solution
of Harper'sequations 8 an 24 ist eq egen repoly-
nomial of the degree 2 . Its explicit form is known:

111(@=o)(iz) z(Q-i)/2

)"- (q q) (q"'q) (q"'q) —,z —.
(q;q) (q;q)—

where (a; q)„= Q& & (1 —aq') is the standard notation.
The most interesting feature of Harper's equation is

the multifractality of the spectrum at P, Q ~ oo, i.e. ,

when flux C/2ir is irrational. The spectrum is complex
but not chaotic. Quite the opposite, it is determined
by the quantum integrability. Moreover, we have shown
that the distribution of the spectrum is equivalent to the
distribution of zeros of the q analog of hypergeometrical
functions.

As we already mentioned the Bethe-ansatz solu-
tion is available (but not presented here) for an ar-
bitrary strength of the potential of Harper's equation.
It provides the basis to study Anderson localization-
delocalization transition of electrons in quasiperiodic po-
tential.

To the best of our knowledge even elementary ques-
tions regarding the Hofstadter problem at irrational flux
remained unclear. For example, the low temperature
thermodynamics, dispersion of excitations, conductivity,
etc. , are not known. In all previous examples of quantum
integrable models all these quantities have been found by
solving Bethe-ansatz equations. Moreover, multifractal
properties of the spectrum have already appeared in the
solution of the XXZ magnetic chain [26] and the Sine-
Gordon model [27]. However, this aspect of integrabil-
ity has never been developed. The Bethe-ansatz solu-
tion does not give an advantage at finite P and Q. Just
contrary, up to Q 6000 direct diagonalization of the
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Hofstadter Hamiltonian is more effective. However, as
usual the Bethe-ansatz solution becomes a powerful tool
at Q —+ oo. The strategy of solving the Bethe equations
is well known: at large Q the roots zi form dense groups
("strings") and can be described by their distributions.
The algebraic equations are then replaced by the sys-
tem of integral equations for the distribution functions
of strings. This program is in progress.
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Note added. —Recently L.D. Faddeev and R.M.
Kashaev [28) accomplished an impressive generaliza-
tion of the Bethe-ansatz solution of Harper's equa-
tion for anisotropic hopping amplitudes t and t„
and arbitrary momentum k. In particular their result
states that for the midband spectrum the anisotropy
changes the l.h.s. of the Bethe-ansatz equations (6) by

whether the r.h.s. remains the
same.
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