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Results of a conserving fluctuation exchange calculation for the superconducting state of a t~o-
dimensional Hubbard model are presented. Self-consistent solutions for the full momentum- and

frequency-dependent gap, renormalization, and frequency shift parameters have been obtained. The re-

sulting frequency- and momentum-dependent gap is found to have d, 2 „2 symmetry. Belo~ T„ the
maximum gap opens rapidly to a low temperature 26,(0)/kT, value of order 10. We find that the
effective interaction arising from the exchange of spin and charge fluctuations is stabilized by self-energy
feedback eA'ects as the superconducting gap opens.

PACS numbers: 71.10.+x, 75.10.—b

For a one-component theory in which the electronic de-
grees of freedom provide both the pairing interaction and
the pair field, it is essential to treat the system self-
consistently. In particular, as the superconducting gap
develops it can modify the pairing interaction which in

turn alters the gap. In the traditional electron-phonon
problem, the change in the lattice dynamics produced by
the onset of pairing correlations leads to a negligible
change in the pairing interaction. However, in a one-
component system where the pairing interaction is medi-
ated by the same electrons which are pairing, the inter-

play between the pairing interaction and the formation of
the gap in the quasiparticle spectrum must be taken into
account [1]. Here we study this problem for the case of a
two-dimensional Hubbard model. Previous calculations
for this model have shown that near half filling, strong,
nearly antiferromagnetic fluctuations develop as the tem-

perature is lowered [2-4]. At a critical temperature,
these Auctuations lead to an instability in the singlet
d ~ y~ pairing channel, and in this Letter we examine
what happens below T, .

The results which will be described are obtained from a
conserving Auctuation exchange approximation [5] in

which dressed one-electron Green's functions are used to
calculate irreducible spin and charge susceptibilities.
These susceptibilities are used to construct a Berk-
Schrieff'er-like [6] interaction describing the exchange of
spin and charge Auctuations. This interaction then pro-
vides the basis for calculating the one-electron self-
energies. The full momentum and Matsubara frequency
dependence of these quantities is kept and the entire cal-
culation is iterated to obtain a self-consistent solution.

The Hamiltonian we will study is given by

H —g t;J. (c;~ct, +ctt c;,) +g Un; 1 n;1 . (1)

Here c;, creates an electron of spin s on site i, U is an on-
site Coulomb interaction, and t;J is equal to t for near
neighbors on a square lattice and t' for next near neigh-

with r.„=E~—It. The renormalization parameter Z(p,
co„), the energy shift X(p, co„), and the gap parameter

p(p, co„) are determined by a Berk-Schrieffer-like interac-
tion constructed from the irreducible spin and charge sus-

ceptibilities

pt't'(q, co ) = —Tg [G(k+q, co„+co )G(k, co„)
k, n

+'F(k+q, co„+co )F(k, co„)]. (4)

The plus sign is for the spin susceptibility go and the
minus sign is for the charge susceptibility go. The spin
and charge Auctuation interactions are given by

S

l —Ugo

and
C

1 + Ug(~)
(6)

The subtracted terms remove a double counting that
occurs in second order. In terms of these interactions, the
one-electron self-energies are given by

bors, giving a one-electron band energy Ep = —2t(cosp„
+cospy) —4t'cosp„cospy. For the calculations described
below we have taken t'/t —0.15, U/t =4, and used a
chemical potential It, which gave a band filling (n;1
+n;1) 0.875.

In the superconducting state, the diagonal and oA'-

diagonal one-electron Green's functions can be written as
[7]

ico„z(p,co„)+tap+I(p, co„)]
G p, co„

[lcoqZ(p, cog)] [Gp+X(p, cog)] p (p, cog)

(2)

y(p, co, )
F p, co„

[tco„z(p,ca„)]' kp+X(p, co—.)]'—y'(p, co„)
'

(3)

1874 003 1-9007/94/72(12) / I 874 (4)$06.00
1994 The American Physical Society



VoLUME 72, NUMBER 12 PHYSICAL REVIEW LETTERS 21 MARCH 1994

(9)

us to keep track of only a subset of the Matsubara fre-
quencies in the range covered, which for the present cal-
culation was 5 times the bandwidth. The details of the
method will be presented elsewhere.

As the temperature is lowered, the spin-IIuctuation part
of the interaction V, increases, and at a temperature
T, 0.021t, we find a pairing instability. Below this
instability, we find a self-consistent solution in which
p(p, N„) is finite. The solid curve in Fig. I shows h(p,
AT) =p(p, AT)lz(p, AT) at the lowest Matsubara fre-
quency for T 0.38T, as p moves along the interacting
Fermi surface from one antinode at p (0.94,0)lr to
another at (0,0.94)z. The dashed curve is proportional
to cosp, —cosp~ and the d, ~ ~ symmetry of the gap is
clearly evident.

Using Pade approximates we have analytically contin-
ued from Matsubara frequencies to real frequencies,
obtaining the complex, frequency, momentum, and tem-
perature-dependent gap

f(P, l'COn ~ CO+ l'b)
a(p, co)

Z(p,ico„N+ib) ' (lO)

For a given momentum, the gap at the gap edge itto(p) is

given by

i)o(p) -Reh(p, N ho(p))

The temperature dependence of the magnitude of the gap
at the antinode is shown as the solid dots in Fig. 2. Here
the dashed curve is the weak coupling BCS result. For

[Vt (P P, COn COn')+ Vt (P P, COn Clln')]lCOn'Z(P, Nn )'

[ l —Z (p, N„)]ico„=—
& p'n' [CN„Z(P', N„)]2 [—Sp+X(P', N„)]2—y2(P', N„)

[V, (p —p', N„—N„)+ V, (p —p', N„—co„)]kp+X(p',N„)]
& p n' '[iCO„Z(p', CO„)]2 —[e~+X(p', N„)]2—y2(p', N„)

T [Vg(P P, Nn COn') Vc(P P N|n Nn')+U]P(P tCOn')S r tl n t' r tl lt r tt

& p'n ' [iN„Z(p', N„)] —
[Cp +X(p,N„)]2 y—'(p', N„)

The effect of the Coulomb interaction U on X(p, co„) is

simply to provide a constant shift which we have ab-
sorbed in p.

These equations are then solved self-consistently on a
128&128 lattice. The convolutions in momentum space
are most efliciently carried out with fast Fourier trans-
forms (FFTs) [8]. When expressed in real space, the
equations for g$' [Eq. (4)], Z, X, and p [Eqs. (7) (9)]-
take a very simple form. The value of g$', Z, X, or p at
lattice point x only depends on the value of the diagonal
or off-diagonal Green's function and the effective interac-
tion at the same lattice point. On the other hand, the
equations relating gl]' to V, , and Z, X, p, to G and F are
simple in momentum space. The fast Fourier transform
allows one to go from real to momentum space with a
very small overhead in CPU time. One could also treat
the convolution in Matsubara frequency space with FFTs.
Ho~ever, at low temperatures, the memory requirements
for a frequency cutoff of several times the bandwidth are
prohibitive. Instead, we chose to treat the Matsubara fre-
quencies with a spline interpolation procedure, allowing
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FIG. 1. The solid curve shows the momentum dependence of
h(pp, „cot)ccas pF moves along the interacting Fermi surface
sho~n in the inset. The shape of the noninteracting Fermi sur-
face for the same filling is not very diN'erent, with the largest
change being near the Van Hove singularity at (lr, 0). Ail ener-
gies are measured in units of t. Here s is parametrized to run
along the Fermi surface from one antinode at (0.94,0)tc to
another at (0,0.94)tr. The dashed curve is proportional to
cospz cospy.
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F1G. 2. The temperature dependence of the magnitude of
the maximum (antinode) d, z 2 gap is shown as the solid dots
for a set of temperatures. The dashed curve shows the usual
BCS gap. The rapid increase of the d 2 y2 gap below T, and
its large 2hp(0)/i'cT, value are characteristic of a spin tluctua-
tion induced d-wave gap.
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conserving approximations of the kind used here, the be-
havior of the gap near T, is characterized by the usual
mean field exponent.

In order to understand the temperature dependence of
the gap shown in Fig. 2, it is necessary to examine the in-

teraction. 3ust as the coupling parameter A. in the tradi-
tional electron-phonon problem characterizes the strength
of the interaction, the integral

dro lm V, (q, ro)
2

n'

qadi(q, o)
I —U~;(q, o)

——,' U'g&(q, o) (I2)

provides a measure of the strength of the spin-Auctuation
interaction associated with momentum transfer q. Figure
3 shows a plot of g((q, O) versus q, along the path illus-

trated in the inset, for various values of the reduced tem-
perature. As expected, the long wavelength spin suscepti-
bility decreases for q values less than the inverse coher-
ence length, reAecting the formation of singlet pairs.
Now, if an s-wave gap opened over the entire Fermi sur-
face, the peak in go(q) would also be suppressed. Howev-

er, for the d, 2 y2 gap found in this calculation, the peak
in g$(q) at large momentum transfer is essentially un-

changed. This behavior is associated with the existence
of nodes in the d, ~ 2 gap [9] and the feedback eA'ect of
the self-energy. This latter self-energy stabilization is an

important example of the feedback that occurs in this
strongly correlated one-component system. If go(q) near
the peak were to drop, then the interaction V, would be
reduced. This in turn reduces the size of the self-energy
leading to an enhancement of gi'i(q). From Fig. 3 we can
see how weil gi'i(q) is stabilized by the feedback in the
large momentum region.

Now, although, as we have seen, the strength of the
pairing interaction in the important large momentum
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transfer region remains essentially constant [10), there is
a shift in spectral weight out of the low-frequency region
as the gap opens [I I). At T„ the low-lying spin Auctua-
tions enhance the renormalization factor Z and suppress,
via inelastic pair-breaking processes, the gap parameter

However, as the gap opens and the low-lying interac-
tion spectral weight is reduced, the inelastic pair-breaking
processes are suppressed, resulting in an increase in p. In
addition, Z is reduced so that h=p/Z is increased by
both of these eA'ects. The increase of h, in turn leads to a
further suppression of the low-frequency interaction spec-
tral weight, producing a positive feedback. This feedback
along with the fact that the interaction strength, Eq.
(l2), remains essentially constant is responsible for the
steep increase of ho(T) below T, and the large 2ho(O)/
kT, ratio [12).

In addition to the momentum and temperature depen-
dence of the gap, it is interesting to examine its frequency
dependence. From our Pade analysis [131 we find, for p
at an antinode on the Fermi surface, the real and imagi-
nary parts of d(p, ro) shown in Fig. 4(a). The structure
at m=260 reAects structure in the interaction which
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FIG. 3. The irreducible spin susceptibility ziI(q) for t0 =0
versus q for various values of T/T, The decrease of Zp(q. ) for
q 0 reAects the formation of singlet pairs. The stability of
ziI(q) near its peak values is a consequence of the d 2 2 nodes
and self-energy feedback eA'ects.

FIG. 4. (a) The real (solid) and imaginary (dashed) parts of
A(p, cu) versus co for T/T, 0.38 at p (0.94,0)z; (b)
ImZ)(q, ra) versus m for q =(n, x) at T=T, (solid curve) and
T =0.38T, (dashed curve).
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and V, .arises from the influence of the gap on the interaction
[14]. In Fig. 4(b) we show 1m'(q, m) versus eo for

q (tr, tr) at T T, and T 0.38T,. When the d, ~ z

gap opens, the low-frequency spectral weight decreases
as expected and a peak appears near 2b,o. For a d„2 ~2

gap &t+q= —
&t, for q =(tr, tr) and the coherence factor

(I &t,
—
+v &t /Et, yv Ft, )/2 associated with quasiparticle

pair production goes to unity. The peak in Im2p' marks
the onset of pair production and arises from this nonvan-

ishing coherence factor and the overlap of the logarithmic
singularities (damped in the dynamic case) at Lip in the
single-particle density of states [9].

Thus the interplay between the quasiparticle gap and
the interaction in this one-component d, 2 y2 supercon-
ductor leads to (1) the stabilization of the strength of the
interaction, (2) the rapid onset of the gap below T, along
with a large 2h (00)/kT, ratio, and (3) dynamic structure
in the frequency dependence of b, (p, co).

As we have noted, this is a model calculation. We have
set the parameters U/t 4, t'/t —0.15, and (n)=0 875.
with both the single-layer cuprate La2- Sr Cu04 in

mind and to increase T, in order to have a more numeri-

cally accessible T/T, range. For a bandwidth of 2 eV,
the transition temperature T, 0.02lt is of order 60 K.
With our choice of parameters, the interaction V, peaks
at the incommensurate momenta q (tr, (1 —b)tt) and

((1 —b), tr, tr) with 8 0.17. At T„ the ratio V, (q, 0)/
V, (0,0) is of order 150 and the inverse width of the peak
at q corresponds to a length of order 10 lattice spacings.
As a rough estimate of the compatibility of these parame-
ters with the cuprates, we consider recent neutron scatter-
ing data [15] on LaissSroi4Cu04. For this material,
measurements of g"(q, to) give b=0.24 and a correlation
length of order 7 lattice spacings [161. The low fre-
quency spectral weight at the peak g"(q, to)/eo is a fac-
tor of 2 smaller than a random phase approximation esti-
mate [17] of g go(I —Ugo) ' using our results [Eq.
(4)] for 2'0.

The work reported here was partially supported by the
National Science Foundation under Grants No. DMR
92-25027 and No. PHY89-04035. The numerical calcu-
lations were performed at the San Diego Supercomputer
Center.

Note added. —Chien-Hua Pao and N. E Bickers. have
carried out conserving fluctuation exchange calculations
for the superconducting state of the Hubbard model
(Bickers [18]).Lenck, Carbotte, and Dynes [19] have re-

cently solved the Eliashberg equations with a spin-
fluctuation interaction based upon a phenomenological
form for the spin susceptibility but did not find a super-
conducting solution when the interaction was self-
consistently calculated. We wish to thank N. E. Bickers
and 3. P. Carbotte for discussing their work with us prior
to publication. We also wish to thank S. Quinlan for his
insight regarding double counting in the interactions V,
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