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Isotopic Shift of Helium Melting Pressure: Path Integral Monte Carlo Study
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We compute by a path integral Monte Carlo calculation the isotopic shift of helium melting pressure
in the temperature range (T & 100 K) where a discrepancy between theory and experiment has been re-

cently reported. We use a realistic Aziz pair potential together with Bruch-McGee three-body forces for
the interaction. The isotopic shift predicted in this work is in agreement with experiment; its measure-
ment provides a good test of the interatomic potential of helium, as the isotopic shift is sensitive to the
kinetic energy, which is determined by the short-range pair interaction.

PACS numbers: 67.80.Gb, 61.20.Ja, 67.90.+z

Quantum effects [1] cause the two helium isotopes
( He and 3He) in the solid phase to melt at two slightly
different pressures, tr4 and tr3. A path integral Monte
Carlo (PIMC) calculation [2] yielded an isotopic shift
6tr tr3 tr4 monotonically decreasing in the 0-250 K
temperature range, becoming negative at T=100 K; in

this study an effective pair potential was used for the
atomic interaction [3] reproducing a number of experi-
mental high-pressure data. However, recent diamond-
anvil-cell measurements of the melting curves of He and

He show a behavior of intr in marked qualitative
disagreement with the above predictions. The experiment
finds that htr attains a minimum (close to zero) at
T= 180 K and increases at higher temperatures [4].
Thus there is a puzzle in understanding the simplest
quantum solid.

There is an exact relationship between d, tr and the
difference between the kinetic energy of the solid and
liquid phases at melting, if one neglects the effect of the
nuclear statistics, which is small at these densities. For a
given temperature T, let f,(x) and v, (x) be the free en-

ergy and volume per particle at melting of the isotope of
mass m 1/x in the phase a, with a S (solid) or L
(liquid). Then, the equation of phase equilibrium is

f~(x)+ tr(x) v~ (x)-fL (x)+ tr(x) vL (x),
tr(x) being the melting pressure. But the derivative of
the free energy with respect to x is proportional to the ki-
netic energy of the nucleii, since the inverse mass is the
coupling constant in the (nonrelativistic) Hamiltonian:
(Bf,/8x)v =k, (x)/x. Taking the derivative with respect
to x of each side of (1) at constant volume and integrat-
ing from x4 =1/m4 to x3-1/m3, one obtains

~3 dx kg(x, vg(x)) kL(x, vt (x)—)
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x vt (x) vs (x)—

hC

0)
V

~~
CO
CL

0)
CL

O)

C

V
~~
t:

hC

545-

525-

505

485-

'h

X

--a-
8 -Q.

liquid He3 ~

solid He3
liquid He4 o
solid He4

465-
I I I I I I I I

4.5 4.6 4.7
Molar Volume (cc/mole)

FIG. l. Kinetic energies per particles (K) vs molar volume
(cm'/mole) computed by PIMC, at T-250 K, for solid (dia-
monds) and liquid (squares) He and for solid (triangles) and
liquid (crosses) 3He. Dashed lines are linear fits to the data.
Arrows point to the values obtained in the solid (liquid) phase
of both isotopes at the experimental melting density of solid
(liquid) He. Also shown for comparison are the kinetic energy
values from Ref. [2] for solid (filled triangle) and liquid (star)

He and for solid (filled diamond) and liquid (filled square)
4He.

4.4

The denominator of the integrand is positive, slowly vary-
ing with mass, and can be determined independently from
experiment. Hence, the measurement of the isotopic shift
is essentially a measurement of the kinetic energy differ-
ence between the coexisting liquid and solid phases.

Figure 1 shows calculated kinetic energies per atom for
the two isotopes of helium in the liquid and solid phases,
at 250 K. We first note that the kinetic energy is higher
than its classical value, 375 K, by 40% in He and 30% in
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He. Thus, quantum eA'ects are important even at this

high temperature. %e also see that there is a strong
dependence on density, mass, and phase. Remarkably,
the kinetic energy in the liquid is higher than in the solid,
at the same density. In the solid the particles keep away
from their neighbors more effectively (as revealed by the
pair correlation function) and this causes a slight lower-

ing of the kinetic energy. For coexisting liquid and solid

phases, the solid has a slightly greater kinetic energy due
to its higher density; however, there is clearly a delicate
cancellation which may account for the negative value of
htr found in Ref. [2]. In Fig. 1 we also report for com-
parison the kinetic energies calculated in Ref. [2] at the
estimated melting densities; they are lower than ours by
as much as -25 K (for liquid He). The isotopic shift is

rather small (-0.2% of the melting pressure) and can
only be resolved by determining the kinetic energy to
better than 0.1%. The shift is also very sensitive to the
volume change at melting.

We have carried out PIMC calculations to obtain these
kinetic energies assuming a semiempirical pair and
three-body potential. Using (1) we have obtained esti-
mates for hx in excellent agreement with experiment: at
T 250 K we find htr 21 ~ 5 MPa, to be compared with
the experimental value 25+ 15 MPa [4]. At T 300 K,
for which no experimental data are available yet, we find

41+ 7 MPa. In the remainder of this Letter we first
motivate our choice of the interatomic potential; we then
describe the main elements of the PIMC method and de-
tails of the calculation of the isotopic shift and finally dis-
cuss our results.

We begin by making the Born-Oppenheimer approxi-
mation. Our elementary particles are distinguishable
helium atoms interacting via a semiempirical potential.
Thus the kinetic energy that we compute &s of an atom,
not strictly of the nucleus. The determination of a poten-
tial to describe the interactions among atoms in helium
has been the goal of a long-lasting research effort. Aziz
and collaborators [5] have carefully combined all theoret-
ical and experimental gas phase data on the interaction of
two atoms to obtain a highly reliable pair potential, which
has proven itself adequate to describe the energetic and
structural properties of liquid He in the superfluid re-
gime. At higher density, calculations based upon it pre-
dict equilibrium pressures significantly higher than the
ones experimentally measured. This fact signals the ex-
istence of attractive many-body forces [6]. The effective
potential approach [3] attempts to incorporate many-
body effects into a pair potential whose parameters are
determined by fitting high-pressure experimental data.

Another way of treating interactions of many atoms is
to include them explicitly as three-body terms in the in-
teratomic potential; extensively studied ab initio three-
body contributions are the triple-dipole Axilrod-Teller [7]
and the eAects related to the changes in the electronic
clouds of two interacting atoms due to the presence of a
third one. The Bruch-McGee potential [8] combines

these two contributions in the following expression:

[ ~e —~(~+~+i)+C(rst) ]f(1i, 12,1s), (3)

where r,s, t are the sides and t~, t2, t3 the angles of the
triangle formed by three atoms and f(ti, t2, t3) 1

+3cos(ti)cos(tz)cos(ti). The interaction V3, together
with the Aziz two-body potential [5], was shown by
Loubeyre [9] to yield a reasonable quantitative descrip-
tion of He, in the 1-10 GPa pressure range. In Fig. 2
we show the good agreement with available experimental
data on liquid and solid He up to pressures of 17 GPa.
We obtained such an agreement by adjusting the constant
A to a value equal to & of the value given in Ref. [9]; for
the other constants we use the values suggested in the
same reference. It is worth mentioning that no agree-
ment exists as to the exact values of the constants, and
even the analytical form of the potential (3) may be ques-
tionable [10].

Next we give an outline of the PIMC method (for a
thorough description, see, for instance, fl 1]), a well-
established computational tool which can calculate exact
properties of quantum many-particle systems at finite
temperature. Given a system of N particles, character-
ized by a Hamiltonian H, the average of a physical ob-
servable 8 is

I(8) =— dR8(R)p(R, R;P), (4)

where R=ri, r2, . . . , riv are the coordinates of the N par-
ticles, p(R, R;p) =(R(e ~ (R) (with p I/kT) is the
many-body density matrix, and Z JdRp(R, R;p) is the
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FIG. 2. Comparison between experimental (crosses) and
PlMC (open diamonds) data for hcp solid He, and between
experimental (triangles) and PIMC (open squares) data for
liquid He, at T 300 K. The dashed line indicates the melting
pressure. For comparison, we also show pressure estimates for
the liquid (filled squares) and the solid (filled diamonds) ob-
tained without the inclusion of the three-body term, i.e., with
the Aziz two-body potential only.
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partition function. A PIMC calculation consists of gen-
erating stochastically a set of configurations [R;] statisti-
cally sampled from a probability density proportional to
p(R, R;P); the quantity (6) can thus be evaluated as a
statistical average over the set of values [6(R;)}. Now,
since the explicit form of p(R, R;p) is not known, one
uses the identity e ~ = (e ' ), with r =p/M. As M
increases, explicit approximations for p(R, R';r) can be
obtained. Thus, it is possible to generate the config-
uration sample [R;[ by sampling "paths" through the
configuration space from a probability density proportion-
al to p(Rp, Ri, r )p(R|,R2, r ) p(R~-|,Rp', r ).

The number M of intermediate points ("slices" ) in

which the interval p must be partitioned crucially de-

pends on how accurate an approximation one can obtain
for p(R, R';r); it is highly desirable [I ll to keep the
number M down to a minimum, in order for the calcula-
tion to be efficient. To this aim, a remarkably effective
form for p(R, R';r) is given by

Ak = —p(k V3)+p(k)(V3), (6)

p(R, R';r) =p (R,R';r)exp —g u(r;i, r';7;r), (5)
I'& j

where p (R,R';r) is the density matrix for a system of
N free particles and u is defined to be exact for two in-

teracting atoms; r;j, r';i are the vectors between two He
atoms at two successive slices, separated by s. This densi-

ty matrix is considerably more accurate than the com-

monly used "primitive" approximation, which consists of
setting u(rij, r';l;r) =(r/2)[V(rz)+ V(r';J )], V(r) being
the two-body potential. Using the pair density matrix (5)
we observe convergence in the kinetic energy with M =4,
whereas with the primitive approximation one needs at
least M=20. This results in much larger statistical er-

rors, making the evaluation of the isotopic shift extremely
difficult.

For computational convenience, only the Aziz two-

body part of the potential is included in the action of our
PIMC simulation. The contributions of the three-body
term to the thermodynamic averages of the observables
are evaluated "perturbatively, " i.e., as averages over a set

(typically 100) of PIMC-generated N-particle configura-

tions, following a procedure analogous to the one outlined

in Ref. [12]. Because the three-body potential does not

appear in the action, the kinetic energy [11]depends only

on the pair potential. To lowest order in V3, the change
in the kinetic energy due to V3 is given by the correlation
between the kinetic energy and the three-body potential:

lation of 108 He atoms either in the liquid or in the solid

(fcc or hcp) phase. In Fig. 2 we compare our PIMC esti-

mates of the equilibrium pressure at diAerent molar
volumes in liquid and solid (hcp) He at T =300 K with

experimental diamond-anvil-cell data from Refs. [13] and

[14]. We show PIMC results obtained with (open sym-

bols) and without (filled symbols) the inclusion of the
three-body potential (3); it is evident from the figure that
the three-body term is essential to reproduce the experi-
mental data in this pressure range. It is worth mention-

ing that the contribution to the pressure from the
Axilrod-Teller part of (3) is positive and its absolute
value is an order of magnitude smaller than the absolute
value of the contribution from the exchange part, which

is negative.
Calculating the isotopic shift directly from the inter-

atomic potential is notoriously difficult computationally,
because small systems do not spontaneously melt or
freeze; it is necessary to evaluate the free energy of each
phase by integrating the energy from high or low temper-
ature. Instead we follow a procedure similar to the one in

Ref. [2]. Our calculation accurately reproduces the ex-
perimental pressure in the density range of interest;
therefore, we perform isochoric simulations of the two

phases at the experimental melting and freezing densities.
This is an important point, as the kinetic energy is strong-

ly dependent on the density and it is therefore crucial to
perform the simulations at the correct values of v, . We
then use Eq. (2) to estimate the isotopic pressure shift.
Let us use a three-point trapezoidal approximation to the

integral in (2) and neglect the dependence of vs(x) and

(L(x) on x [15]:

A(x, )+2A(x')+ A(x, )dr= —,
'

ln m4m3
( ) ( )

where A(x) =k~(x, vg(x4)) —kL(x, vL(x4)); x' refers to

an isotope of intermediate mass 1/x'= Jm3m4. We
evaluate (7) by performing isochoric simulations of the
three isotopes in the liquid and solid fcc phases at vs(x4)
and vL(x4), which are known from experiment [14,16].

In Table I we report our PIMC results for the kinetic

TABLE I. Kinetic energy per particle (in K) in the solid and

liquid phases of He, 3He, and of an isotope of intermediate

mass m„=gm4m3, at T=250 K and T=300 K. The volumes

per particle (in cm /mole) are those of He at melting. Statisti-
cal errors (in parentheses) are on the last digit.

where ( . . ) is an average over the configurations gen-

erated with the two-body potential only. Although the
estimates are noisy, we find that the change in the kinetic

energy is smaller than 0. 1 K in both the solid and liquid

phases. This establishes that it is the two-body potential
which determines the kinetic energy.

We have performed a path integral Monte Carlo simu-

250
300

250
300

4.51
4.18

4.64
4.30

He

fcc solid
524.9(3)
607.7(3)

Liquid
523.0(3)
605.0(4)

"He

505.7 (3)
588.9(4)

504.7(3)
586.5(4)

4He

489.9(4)
571.5(3)

488.9(3)
570.7(3)
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energy per particle in the three isotopes at T=250 and
300 K. The predicted value of Atr from (7) at T =250 K
is 21~5 MPa, in excellent agreement with the experi-
mental value of 25 ~ 15 MPa [4] and in contrast with the
value of Atr= —120 MPa predicted in Ref. [2]. At
T=300 K we find 6+=41+ 7 MPa.

Summarizing, the isotopic shift is determined mostly

by differences of kinetic energy which are in turn in-

fluenced by the pair potential. Thus the measurement of
the isotopic shift of the melting pressure provides a test
for the interatomic potential in solid helium at high pres-
sures. Use of the low-pressure pair potential gives agree-
ment with experiment. A three-body potential is neces-
sary to reproduce the experimental equation of state but
has little effect on the kinetic energy. The effective pair
potential utilized in Ref. [2] may be the cause of the
disagreement with experiment. By softening the pair po-
tential to mimic the effect of higher-order many-body po-
tentials, there is good agreement with the high-pressure
experimental equation of state but significantly smaller
kinetic energies. The measurement of the influence of
mass on pressure is not confined to the melting line. One
can use the Maxwell relation

dh dk
din(x) r dv

to estimate the kinetic energy of solid helium. These
measurements in combination with PIMC calculations
would provide a significant test of interatomic potentials.
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