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The general evolution equation describing spinodal decomposition in systems with conserved or non-

conserved order parameter is developed. It is shown that if in the system thermodynamic potential ex-
pression the coe%cients at order parameter square and at order parameter gradient square can change
sign near the spinodal point, some different decomposition scenarios are possible, which result in system
transformation from disordered to ordered, modulated, patterned, or ordered-patterned states.

ydx=N,

where N =LE', L is the system size, d is the system
dimensionality, and y is the volume mean value of
y(x, t), which is constant in time. In both cases the sys-
tem free energy expression in the Landau-Ginzburg [3]
form is used,

F(ly) 2 „dx[Ay + 2 Brtl +C(Vy)2[, (2)

where B,C are positive constants, A =A(T), T is temper-
ature, and Tz is its phase transition value, defined by the
condition A (T~ ) 0. The homogeneous order parameter
distribution yp(x) 0 is the extremal of (2) above
(T & T~, A & 0) and below (T( T~, A (0) the spinodal
point. The NCOP dynamics near this extremal is defined

by the Landau-Khalatnikov [4,5] evolution equation,
which supposes the order parameter evolution rate to be
proportional to the thermodynamic force,

By/Bt = —I BF/by, (3)

where I is a constant and bF/b'rtt is a functional deriva-
tive. The COP dynamics near yp(x) 0 is defined by
Cahn's evolution equation [6]

Brtl//Bt =MV hF/bitt, (4)

where M is a constant. The latter is derived from Fick's
law [7]

(5)j= —MVp,
which assumes the proportionality of COP current densi-
ty j to the gradient of "local chemical potential"
p(x, t) =bF/by, and from the continuity equation

By/Bt+Vj 0, (6)

PACS numbers: 64.60.Cn, 64.75.+g, 75.40.Mg

When a system described by a scalar order parameter

y(x, t), depending on space and time, is rapidly quenched
from the homogeneous high-temperature phase to the
two-phase coexistence region, a dynamical phase separa-
tion process develops, which is called "spinodal decompo-
sition" [1]. Usually, for theoretical analysis of spinodal
decomposition dynamics two physically important models

are considered [2]: a system with nonconserved order pa-
rameter (NCOP) and a system in which the order pa-
rameter is conserved (COP); i.e., y satisfies the condition

y(k) Mk z(A+ Ck 2) (10)
In this form of representation the conservation condition
(1) is simply the boundary condition in k space

y(k, t)i1,-p-O.

From (8)-(10) it follows [1,4-6] that both systems are
stable above the spinodal point against infinitesimal
changes of the order parameter for all k. Below the spi-
nodal point they are unstable, and the order parameter
space inhomogeneities with k (k~, where kg 4—A/C,
will grow exponentially. The maximum growth rate has
inhomogeneities with k 0 for the NCOP system and
k 4—A/(2C) for the COP system.

Just a cursory comparison of the foundations (1) and
(2) and the resulting evolution equations (3) and (4),
(8)-(10) shows some contradictions. For the NCQP
model all above mentioned conclusions about its behavior
can be seen already from the free energy expression (7)
and it does not raise any doubts. For the COP model the
same free energy expression (2) is used. It diff'ers from
the NCOP model only through condition (1), the in-

fluence of which must be displayed for the inhomo-
gerreities with wave number near kL 2rt/L. Therefore,
the existence of the selected mode with wave number
k =4—A/(2C) depending on the constants A and C of
the free energy (2) is very unnatural. For k»kL the
COP evolution equation should turn continuously into the
NCOP one, but this does not follow from (9) and (10)
[8]. In my opinion all these contradictions are concerned
with Cahn's equation (4) not having a sufficiently physi-
cal foundation and being incorrect. The main error in the

which is the diff'erential form of (1). Introducing a
Fourier transformation representation the free energy (2)
and the evolution equations (3) and (4) can be written in

linear approximation for y as

F- —,
' g [[A+Ck ']y(k, t) y( —k, t)],

k

ditt(k, t )/dt - —y(k) rtt(k, t ),
where, for the NCOP,

y(k) =1(A+Ck ),
and, for the COP,
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F(y) -~ dxf[y(x, t),Vy(x, t),V'y(x, t),. . .] (12)

by introducing a local free energy density f(y, V y,
V y, . . .) which depends on the values of y and its space
derivatives only at the point x. For the NCOP system, an
extremum of free energy (12) defines the system extreme
state [3,10]. The necessary extremum condition is

bF bF/hyle-~, t, iby 0, (i3)
and Eq. (3) describes the order parameter evolution near
the extremal yn(x). When y is conserved the system ex-
treme state is defined by the thermodynamic potential
0 F—pN extremum. The constant p, being conjugat-
ed to the variable N chemical potential [3,10], and the
extremal yo(x) are found from the variation equation

bo -(bF/byl&-~&*i —u)by-0 (i4)

and condition (1). For the weakly nonequilibrium state
i.e., for small values of bA/by, we can suppose the evolu-
tion rate of by(x, t) y(x, t) —yo(x) to be proportional

development of (4) is to use at the same time Fick's law

(5},being a law of linear thermodynamics, and the free
energy expression (2), which is outside of this thermo-
dynamics. By writing (2) we violate the main linear ther-
modynamics supposition about local system equilibrium
[3,7], since the local free energy in (2) is dependent not
only on the order parameter lrp, but also on its space
derivatives. Therefore the usual definition of a chemical
potential conjugated to y loses sense and Fick's law can-
not be utilized [7,9]. From my point of view, experimen-
tally observed formation of spatial modulated structures
during spinodal decomposition [I] is related, not with the
conservation of the order parameter, as follows from
Cahn's theory, but with the form of potentials (2) and
must have the same nature in both the NCOP and COP
systems.

This work contains three important results. First, a
general evolution equation is developed, which describes
the spinodal decomposition in both COP and NCQP sys-
tems. Second, it is shown that for a full description of the
decomposition we must take into account the fifth-order
spatial derivative of the order parameter in the free ener-

gy expression (2), and assume that not only A but also C
can change the sign near the spinodal point. Third, it is
demonstrated that there are some diA'erent decomposition
scenarios connected with the order of sign changes of
these coefficients during quenching, which result in sys-
tem transitions from disordered to ordered, modulated,
patterned, or ordered-patterned states.

To base these affirmations let us develop in detail the
evolution equations for both NCOP and COP systems in
the same way. Consider a system of constant volume L
at constant temperature T, which is in a state of local
equilibrium with respect to all parameters, except some
order parameter y(x, t). If the gradients of y are small,
the system free energy may be written in the form

to bD/by by analogy with (3),

8y/rit = f—'(bF//By p—) . (i 5)

The A and C coefficients may change signs independently
of each other, so that the different system states arise.
Their number and stability depend on proportions of A,
B, C, D, and E coefficients and form a complex picture in
general. We will restrict ourselves to consideration of the
evolution of the system states near the state with homo-
geneous order parameter distribution. In this situation,
as was shown above, 0 F and both systems' evolution is
defined by the same equation [14]:

8y/8t 1 (Ay+By3 ——Chy+Dh y Ey2b. y) . —

(i7)
For the COP system, condition (I}with y 0 should be
taken into account. In the linear approximation for
Sy =y —yo, the order parameter evolution is described
by Eq. (8) with

y(k) -I-(A+ Ck'+Dk') (i8)
Introducing the structure function S(k, t) as a Fourier
transformation of correlation function (by(O, t)by(x, t))
[I],we have from (8)

dS(k, t)/dt -—2y(k)S(k, t),
with y(k) defined by formula (18). The boundary condi-
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Here it should be remembered that from all the possible
solutions of (15) only the ones which satisfy (1) are valid.

Comparing (3) and (15) we see that both NCOP and
COP systems may be described by a single evolution
equation (15), and the NCOP system is a special case of
the COP system, with p 0, and condition (I ) need not
be used for the solution selection of Eq (1.5) [11].

If F(y) has the form (2), yo(x) 0 is the solution of
Eqs. (13) above and below the spinodal point. We have
for the COP system N 0 in (1) and it=0 in (14) and
(15), so that 0 F and both systems have the same evo-
lution equations (3) or (8) and (9). They differ from
each other only by conditions (1) or (11). From (8) and
(9) we see that the maximum growth rate has the inho-
mogeneities with the minimum possible wave number,
namely, k 0 for the NCOP system and k 0 for the
COP system. In other words, there are no order parame-
ter spatial modulations with k»kL in both systems, as
we have already discussed. One can see from (2) and (7)
that for the appearance of this type of system instability
it is necessary to assume that the C coefficient is negative,
but then we should consider the next members of the
series on the space derivatives to ensure the global system
stability. In the most general form the local free energy
density may be written as [12,13]

f 2 Ay + 4 By + z C(Vy) + —,
' D(hy) +Ey (Vy)
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S(k,~) T/(A+Ck +Dk ). (21)

In the COP system thermal fluctuations are limited by
the condition (20), so that the equilibrium correlation
function S(k, oo) 0 for k 0 (k«kL) and S(k, ~) is

given by (21) for k »kL', therefore we have [17]

S(k,~) [k /(k +kt2)]T/(A+Ck +Dk ). (22)

Equation (19), with thermal fluctuations, becomes

dS(k, t)/dt —2y(k)S(kt), +2I Tk /(k +kt ) (23)

We can see from (16)-(23) that there are some impor-

tant system states defined by the signs of the A and C
coefficients. It is useful to represent these states on the

coordinate plane (A, C). For simplicity, let us begin with

the NCOP system. If A & 0, C & 0 (region I), yp(x) 0
is the single stable stationary solution of (17), or in other

words the system is in the one-phase homogeneous state

(disordered state) [3]. If A & 0, C)0 (region I I),
Eq. (17) has two stable stationary solutions harp(x)

+ 4 —A/(28); i.e., the system is in the two-phase

homogeneous state (ordered state) [3]. If A &0, C&0
(region IV), Eq. (17) has a stationary homogeneous solu-

tion yp(x) 0 and some stationary space-periodical ones

[19],the common property of which is ittp 0. Therefore,

we can say that the system is in the one-phase inho-

mogeneous state. In region IV', where C& —2JAD,
ittp(x) 0 is the single stable solution, as in region I.
However, the equilibrium correlation function (21) has a

maximum not at Ikl 0, b«at Ikl=kc, where kg
=4—C/(2D). This signifies that a thermal fluctuation

induced transition to the modulated state takes place.

In the region IV", where C& —24AD, the solution

yp(x) 0 is unstable and Eq. (17) admits stationary one-,

two-, and three-dimensional space-periodical solutions

[15,19]; i.e., the system is in the one-phase patterned

state (or, more simply, patterned state). It can be shown

[12] that in region III (A &0, C&0), Eq. (17) has

unstable stationary homogeneous solutions yp(x) =0,
~ O' —A/(28) and stable stationary space-periodical

solutions with harp-+ 4 A/(28) and k ne—ar kg. This

means that in region III the system is in the two-phase

patterned state (ordered-patterned state).
There are some different system transformations con-

nected with the sign change of the A and C coefficients.

The transformation I II is the well-known disorder-
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tion for the COP system (11)has the form

S(k.t) Ii -p=0.
On writing (3), (15), (17), and (19) we have neglected
order parameter thermal fluctuations. If y(k) &0, ac-
cording to (19) any initial distribution S(k,0) should fall
to zero with time. On the other hand, it is well known

that S(k, ~) is not zero [3,16]. For the NCOP system
S(k, ~) is defined by the Qrnstein-Zernike formula [3],
which can be generalized for (16) as

order phase transition [5]. Any order parameter inhomo-

geneity with k & kg grows during decomposition until the
moment when equilibrium values are achieved, and then

the coalescence process begins. The maximum growth
rate has inhomogeneities with the wave number k 0.
The transformation I IV is the transition to the inho-

mogeneous state. The transition I IV' is the one from

the disordered state to the modulated state and results in

the appearance of a new maximum of the equilibrium
correlation function S(k,oo) at k k~. The transition

I IV" is the one from the disordered state to the pat-
terned state [15]. Any order parameter inhomogeneity

with kgi & k & kp2, where kgi g2 (kg + /kg A )
grows exponentially and inhomogeneities with wave num-

ber k kc have a maximum growth rate. It can be

shown [12] that after the II III and IV III transi-
tions the system symmetry changes take place with split-

ting of the ordered state and the patterned state on the
ordered-patterned states. The A and C coeScients de-

pend on T, so that the critical values T~ and Tc [the
latter defined from condition C(Tg) 0] are in general
not coincident. Thus, the system transition I III from

the disordered (T & T~, T & Tg) to the ordered-

patterned state (T & T~, T & Tg) may be realized in

three different ways: I II III (Tz) Tg); I IV

III (T~ & Tg); I 0 III (T~ Tg). So, three
transitions I II, I III, and I IV result in the

decomposition of the disordered state. Two of these,

II and I III, are related to spinodal decomposition,

although the first does not result in spatial modulated

structure (k 0). On the contrary, during the I

transition these structures are formed (k kg), but it is

not really spinodal decomposition, since the system does

not come below the spinodal temperature Tg.
The COP system has the same evolution equations of

disordered state decomposition (g) and (18) as the

NCOP system, but the supplementary condition (11).
For the practically important case k»kL any difference

in their behavior must not be observed, because of the

small influence of this condition. In the other cases the

decomposition consideration demands more detailed

analysis of system boundary conditions influence on the

pattern selection process [12,15].
. I note some circumstances in conclusion. First, I can-

not make in this short communication the full comparison

of our theoretical conclusions with numerous experimen-

tal data for the spinodal decomposition problem [1].
From more interesting results, I note that this approach

removes one of the most important discrepancies between

experiment and Cahn's theory, namely, the amphfication

factor —y(k) dependence of wave number k. According

to Cahn's theory —y(k)/k should be a linear function

of k, whereas all experimental evidence shows [1,20]

that there are considerable deviations from the linear re-

lation especially for small k. Second, the exponential

growth of the structure function S(k,t) in (19) and (23)
is evidently related with the evolution equatioll (17)
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linearization. Taking into account the nonlinear effects,
for example by the LBM method [I], has no principal
difficulties [12], although the evolution equation (17) is

much more complicated than that of Cahn (2) and (4)
[21]. Third, discussion about critical dynamics of sys-

tems with "global" and "local" order parameter conser-
vation laws [22] is related, in my opinion, to the impossi-

bility of formulation of the "local" conservation law

without using Fick's law (i.e., without the supposition
about the local system thermodynamic equilibrium) in

the theory and to artificial methods of its realization in

computer simulation models. Recent computer simula-

tion results are consistent with those presented here and
'demonstrate that systems with global conservation laws

and those ~ith no conservation laws are in the same
dynamical universality class [23]. Finally, the decompo-
sition process depends on proportion of A(T) and C(T)
coefficients, i.e., on the concurrence of short- and long-

range attractive and repulsive interactions of the system
elements. Therefore, the effects discussed in this article
must be observed in systems where this concurrence is

significant, for example, some binary alloys and liquids,
oxide compounds, uniaxial ferromagnetic films, lipid

monolayers, ferrof]uid systems, etc. [20,24].
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