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%'e construct trace maps for products of 2X 2 matrices generated by arbitrary substitution sequences.
The dimension of the underlying space of our trace map is the minimal possible, namely 3r —3 for an al-

phabet of size r ~ 2.

PACS numbers: 61.44.+p, 71.20.Ad, 72.10.—d

The discovery of quasicrystals ll] and their one-

dimensional modeling [2] have led to a deep mathemati-

cal study of Schrodinger operators with arbitrary deter-

ministic potential sequences. This instance should be

thought of as lying in between the case of random poten-

tials and that of periodic potential. The study of quasi-

crystals leads to the Fibonacci chain [3], which arises

from a certain substitution (see below) on a two-letter al-

phabet. Other sequences obtained by substitutions on

such alphabets were studied, in particular generalizations

of the Fibonacci chain [4] and the Thue-Morse sequence

[5]. Systems originating from substitutions on larger al-

phabets were considered as well; the Circle [6] sequence

and the ternary quasiperiodic sequences [7] arise from

three-letter alphabets, the Rudin-Shapiro sequence [8]
studied in [9] and quarternary quasiperiodic sequences

[10]—from four-letter alphabets, and the N-ternary Fi-

bonacci lattice [11]—from alphabets of arbitrary size.

An efficient method in the analysis of such systems is

that of transfer matrices, first introduced by Brillouin

[12]. The next step is obtaining trace maps, which was

first carried out by Kohmoto, Kadanoff, and Tang and

Ostlund et al. [3];see also Kohmoto and Oono [13]. Al-

louche and Peyriere [14] proved, more generally, that

for any substitution on a two-letter alphabet, one can

effectively construct a trace map acting (in the case of

unimodular matrices) on three-dimensional space. Kolar

and Nori [15] have shown that trace maps of higher di-

mensions do exist for substitution sequences containing

more than two letters. The dimension in their construc-

tion increases, however, faster than exponentially as a

function of the alphabet size r The dimens. ion was later

[16] reduced to 2' —1, and Iguchi [17] reduced it further

to r(r+ 1)/2. (It is worth mentioning here that there are

other approaches which are not based on trace maps of

transfer matrices [18].)
In this paper we get the best possible result in this

sense by reducing the dimension of the trace map to

3r 3. (In the trivial case r—1 the dimension is 1. We

shall avoid this case. ) In the general case, the dimension

cannot be made smaller.
ft has recently been demonstrated that a crystal with

the structure of a Thue-Morse chain can be grown.

Therefore, fabrication of one-dimensional quasicrystals

with other substitution rules might be experimentally ac-

cessible. Hence, the trace map we suggest here may serve

as an important theoretical tool for the investigation of
new artificial structures.

Definitions and notation Let Z. be a finite alphabet, say

[1,2, . . . , r], and let cr be a substitution on Z, namely

o is a function from X to Z, the set of all (finite) words

over Z:

o(k) ok lok2 ' ' ' okq, k 1,2, . . . , r

(ok; 6Z, 1 ~i «qk).

We extend cr to a mapping from Z to Z* by

o'(xix2 ' ' ' xs) o(xi)o'(x2) ' ' 0'(xg),

&t,X2, . . . , &g 6 X.

For example, the Fibonacci chain mentioned earlier is ob-

tained from the two-letter substitution defined by r 2,

cr(l ) 12, o(2) 1. For an extensive treatment of sub-

stitutions, especially from the point of view of dynamical

systems, see Queffeiec's book [19].
Substitutions may serve as a means of defining se-

quences of matrices. Given r initial square matrices

A to, A20, . . . ,A, ti of the same size and a substitution o on

[1,2, . . . , r], we define the sequences of matrices

«Akn]n-0. 1 ~ k ~ r by

~a,n+ i -~I q,& . . ~e„n~e„n,

1»k~r, n 01 2. . . .

For the Fibonacci substitution, for instance, we have two

sequences of matrices [A„]„-0and {B„j„-0satisfying

&n+] -&n~n, ~a+] -~n.
The matrices in the applications we have in mind are

usually unimodular. They belong to SL(2,R) or some

conjugate subgroup of SL(2,C). We shall henceforward

usually assume that our matrices are such, although it

will be evident that, using information on the deter-

minants of the matrices in question, analogous results can

be obtained for arbitrary matrices with complex entries

(or, indeed, over any ground field). Thus, we pass from

the r matrices Ak„, 1 ~ k ~ r of the nth stage to the r

matrices Ak + i, 1 ~ k ~ r of the (n+ 1)st stage by
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means of a certain "monomial" transformation of
SL(2,R}'.

Unfortuantely, the dynamics of this kind of transfor-
mation turns out to be quite complicated already for very
simple substitutions. A possible approach to attack this
problem is to restrict ourselves to part of the information
only, i.e., to consider only the traces of the matrices in

question, and not the matrices themselves. Whereas
SL(2,R) is 3r dimensional, we can keep track of all
trace information in a space of smaller dimension. Of
course, the trace of a product of matrices is not deter-
mined by the traces of the individual matrices in the
product, so we cannot work in an r-dimensional space.
However, since conjugating all matrices by some Axed
matrix has no effect on the trace of any monomial in the
given matrices, we can expect to reduce the dimension by
3, from 3r to 3r —3. A trace map is a mapping which,
given the traces of several monomials in the matrices of
the nth stage, enables us to calculate the traces of the
same monomials for the next stage. The trace map con-
structed by Allouche and Peyriere [14] in the case r 2
acts on a space of the right dimension 3&&2 —3=3. For
example, in the ease of the Fibonacci substitution, if A„
and B„are 2X2 matrices of determinant I, and we set
a„ tA„, b„ tB,, then a„y3 a„+~a„+q—a„(and of
course b„~~ a„). (Here and later t~ denotes the trace
of the matrix M.) All trace maps constructed hitherto
for r ) 2 act on higher-dimensional spaces, and as r gets
large these dimensions are much larger than the 3r need-
ed to keep all matrix information (except that the trace
map given by Iguichi [17] acts on a space of dimension
3&3—3 6 in the case r 3}.

The main result of this paper is obtaining a trace map
of

ne
tri
pe
bu
m
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DeAne the following 2' matrices:

8..., . . . =A~'Az' . . A, (St=0, I, I ~j~r). (5)

Then any monomial AJ, AJ, . . . AJ (I ~ j;~r for I ~i
~ s) can be effectively written as a linear combination of
the matrices B„,, . . . ~, namely,

I 1

g . . . gc„., „B..., . „, (6)
SI 0 S2 0 e, 0

where each coe%cient c..., . -.„ is a polynomial in the
traces tA, I ~ j~ r, the traces tA, A„ I ~j & h ~ r, and
the determinants detAt, I ~j~ r.

The corollary is almost the same as Theorem 1 of Ref.
[16], except for the additional observation that the co-
eScients c,,~. . .„may be expressed as polynomials in the
traces of single matrices At and products of pairs of such
matrices, but traces of products of three or more matrices
are not required. This fact will play a crucial role in the
proof of Lemma 4 in the sequel.

Corollary 2. Let A~, A2, . . . ,A, be 2x2 matrices.
Then the trace tg, ~, . . . ~, of any monomial A~, A~,

AJ; can be effectively written as a polynomial in the
traces tB, , and the determinants detAJ, 1~j~r,
which is linear in the traces of all products of three or
more of the basic matrices.

Lemma 2. Let A, B,C be 2&2 matrices. Then

ABC 2 [(tABC tABtC tAtBC+tAtBlc)1

+ (tSC tBtC)A tACB+(tAB tAtS)C

+ tcAB+ tBAC+ tABC] .

+ (tAB —tAtB) CD+ tCABD+ tBACD+ tA BCD] .
In particular,

I
tgggD 2 &EgggtD+ EABDtg+ EgcDE8+ EggDtg +EABEcD EggtBD+ tgDtgg

tABtctD tADtBtc tSCtAtD tcotAtB+tAtetctD) . (9)
Employing Corollary I, we immediately obtain from Lemma 3:
Corollary 3. Let A~, A2, . . . , A, be 2x2 matrices. Then any monomial AJ-, AJ-, - - . A~ can be eA'ectively written as a

d imens&on 3r —3 for any r. The simplest proof for Lemma 2, as well as for Lem-
The t««map. In this section we derive formulas con- mas 3 and 4 later, goes via Lemma l. As one can, how-
cting various monomials in several matrices, and ma- ever check both iemmas directly we ~he'll not provide
ees of these monomials The formulas for traces aP- proo'fs
aring up to and including Lemma 4 are known [20], gemark l Taking the tracers of both sides in (7)
t our approach enables us to obtain more results for the are led to a trivial identity The reason is the apppara

atrices themselves, and not merely for the traces.
Denote by I the identity matrix. The following was formula ex ressin ABC as a linear combination of
oved tn Ref. [16].

&,A, B,C,AB,AC, BC with coeScients depending only on
Lemma I. Let A and 8 be 2 x 2 matrices. Then the traces of these matrices. However, such a representa-

BA (tAB —tAtS )I+ tAB+tBA AB . — tion would prove in particular that tABC is determined by
these traces, which turns out to be false (see Remark 2

Corollary l. Let A~, A2, . . . , A, be 2x2 matrices. below).
Lemma 3. Let A, B,C,D be 2x2 matrices. Then,

IABCD T [(tABc tABtc tAtBc+tAtBtc)D+(tBc tBtc)AD tACBD—
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linear combination of the individual matrices A~, the biproducts A~Ak and the triproducts AJAiAt, the coefficients being
polynomials in the traces of these matrices and the determinants detA~. In particular, each trace t~ ~ . . . ~ can beji j2 j»
effectively written as a polynomial in these traces and determinants.

Lemma 4. Let A, B,C be unimodular 2x 2 matrices. Then,
tA»c+ (tAtBtc 4tgc tBtAC tctAB)tABC+ (tAB+ tAC+tBC+tA +tB+tc2

ta&a&a
The last identity is known as the Fricke identity [20].

Remark 2. The lemma means that, given the traces of
the matrices A, B,C and products of pairs thereof, t~»c is

determined (generically) up to one of two possible values.
This indeterminacy is unavoidable. In fact, as the
coefficients in the quadratic equation (10) are invariant
(for unimodular matrices) under inverting all three ma-

trices A, B,C, the trace t„-i»-ic-i satisfies the same
equation. Now one verifies easily that usually tp»c
&t„-IB-IC-I. Thus, we cannot expect an improvement of
(10) in this sense.

Lemma 5. Let A, B,C,D be unimodular 2X 2 matrices
Then,

4 2 &~B &WC 4D2

EBB EB 2 EBC EBD EB
2

4C ~BC ~C 2 ~CD ~C

~AD ~BD ~CD ~D 2 ~D
2

tB tC tD 2

Proof. We shall obtain (11) as a special case of a more
general formula. Let M~, M2, M3, M4, M5 be any 2X2
matrices. Since the space of all 2 x 2 matrices, considered
as a linear space over the base field, is four dimensional,
there exist scalars a~, a2, a3, a4, a5, not all 0, such that

aiM ~+a2M2+asM3+a4M4+asMs =0. (12)
Multiplying (12) consecutively by each of the matrices
M(, 1 «i ~ 5, and taking traces we arrive at

(t4t, »t, )a =0, (i 3)

where a (a~, az, a3, a4, as). Thus, the matrix

(t~,»t, );J-~ is singular, whence its determinant is 0. The

special case M~ A, M2 B, M3 C, M4=D, Ms=I
leads to (12).

In view of the lemma, tcD is generically determined, up

to one of two possible values, by the nine traces t~, ttt,

tc, to, t~tt, tqc, t~n, tttc, tttD. Indeed, (11) yields a quadra-

tic equation in t~D, the coefficient of t~D being

&aa

t» —2 t» 2(tg+ttt+tAB tAtBtAB 4)

gB 2

2(tA 'B 'AB 2) ~

which is usually nonzero.
Remark 3. One should not expect the above-

mentioned nine traces to always determine tcD to within

finitely many possibilities. For example, if A =8=I then

we only know tc and tn, which can be seen to say little
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a t~tct~c t»tct»c+t~ttt~ct»c 4) =0.
L regarding tcD

The last lemma provides the key for our trace map.
Given r unimodular matrices A~, A2, . . . ,A„suppose we
know the r individual traces t~, , 1» j» r, the r —I

traces of products of pairs of matrices containing A~,
namely tq, q, , 2» j» r, and the r —2 traces of products
of pairs of matrices containing A2, namely t~,~,,3» j» r. Employing (1 1), with A ~,A2, A;, Ag in place of
A, B,C,D, respectively, we get quadratic equations deter-
mining generically (up to finitely many possible values)
all traces of the form t~,~„ then all traces of the form

t~,~„„etc. Then, employing (10) we can find (again, up
to finitely many possibilities) all traces of triproducts,

tq, ~,~, By C. orollary 3, we can then calculate the trace
of any monomial. These considerations lead one to ex-
pect the following results to hold.

Theorem l. Given a substitution on an alphabet of size
r, one can effectively construct a corresponding trace ma~
acting on a (3r —3)-dimensional variety in R r+Cg)+Cg

The dimension of the variety cannot in general be re-
duced.

The discussion preceding the theorem does not consti-
tute a full proof, as the traces singled out there determine
all the other traces (up to finitely many possibilities) only
in the generic case. To complete the proof we need the
following two lemmas.

Lemma 6. The algebraic variety defined in R by
r+ C$)

means of the polynomials

L 2 Y(( L;Y(J

L- —2J Yjk

Xg —2

YiJ Yj( Lj
Yk( Lk

L(2 —2 L(

L( 2

(is)YJkPijkl Yik

Y(( YJ(

LJL;

1 »i& j (k (l »r

is (3r —3) dimensional.
Lemma 7. The image of the mapping T: SL(2,R)"R', defined by

T(A(, . . . , A„) =((tg,)), „,(rg, g,)),(k, l, (16)

A, , . . . , A, ~ SL(2,R)
is (3r —3) dimensional.

In view of the preceding results it suffices to show that

the variety in Lemma 6 is at most (3r —3) dimensional

and the image in Lemma 7 is at least (3r —3) dimension-

al.
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Proof of Lemma 6. For distinct integers i,j,k, l E l1,2, . . . , r1 denote by PI;~ktl the polynomial P,t q defined in (15),
where a, b,c,d are defined by [a,b,c,dl = fi,j,k, l) and a & b & c & d. Define also the polynomials

Q;1 X; +XJ+Yti~ X—tXJY;~ —4, 1 ~i &j~r. (i 7)

Let P be the ideal generated by the polynomials P Jtt, 6 be the ideal generated by the polynomials Q;J, and V(P) and

V(6) the varieties of these ideals. Denoting x=(x;)& &;&, and y=(y;1) ~ ~;&i&, we have

,[V(&)& f(x,y):Q;.(x,y) WOj] U V(6) .

In view of the discussion preceding Remark 3 each of the
sets V('P) A ((x,y):QJ(x,y)e0} is (3r —3) dimensional,
while V(6) is clearly r dimensional. This proves the
lemma.

Proof of Lemma 7. It clearly suffices to show the con-
clusion of the lemma holds if the mapping T is replaced
by

S(A (, . . . , A, ) =[(tg,)J-),(tg, g, );-z, (tg,g, )J-3], (19)

A(, . . . , A„6 SL(2,R) .
Taking a "random" point, it suffices to verify that the
Jacobian matrix of S at this point (with respect to ap-
propriately chosen local coordinates) is of rank 3r —3.
This can be accomplished by induction. We omit the de-
tails.
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