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A technique for empirically determining optimal coordinates for modeling a dynamical system is
presented. The methodology may be viewed as a nonlinear extension of the Karhunen-Loéve procedure
and is implemented via an autoassociative neural network. Given a high-dimensional system of differ-
ential equations which model a dynamical system asymptotically residing on a stable attractor, the task
of the network is to compute a reembedding of the attractor and the dynamics into an ambient space
which reflects the intrinsic dimensionality of the problem. The method is demonstrated on the unforced
Van der Pol oscillator, the forced Van der Pol, and the Kuramoto-Sivashinsky equation.

PACS numbers: 42.79.Ta, 02.60.Lj, 89.70.+c

Many physical systems are modeled by high-dimen-
sional systems of nonlinear differential equations. It is
generally the case that these equations cannot be solved
analytically and consequently some type of numerical ap-
proximation of the solutions is sought. Inherent in this
process is the introduction of a coordinate system. For
instance, a Galerkin approximation of a partial differ-
ential equation requires a projection onto some set of
complete functions, e.g., sinusoids if the problem has
periodic boundary conditions. Such an approach often
produces a system of equations which is larger than the
true number of degrees of freedom of the phenomena be-
ing modeled. This Letter proposes a technique for con-
structing a system of equations which more closely
reflects the intrinsic dimensionality of the dynamics under
investigation.

The Karhunen-Loeve (KL) decomposition has been
widely used as a tool for the dimensionality reduction of
dynamical systems, see [1]. The eigenfunctions produced
by this procedure provide an optimal linear coordinate
transformation which permits the original dynamical
model to be reformulated. Ideally, a subset of the
transformed equations actually models the dynamics and
the remaining equations may be ignored.

Unfortunately, however, this method fails to produce a
minimal coordinate system in simple cases. For instance,
a periodic solution should be parametrizable by a single
equation given that a closed curve, such as a circle, may
be viewed topologically as a one-dimensional manifold. It
is apparent that the KL expansion requires two eigenvec-
tors and hence two equations to reconstruct the dynamics
in this case. In general, the Euclidean space spanned by
the KL basis may be viewed as encapsulating the non-
linear manifold and the intrinsic dimensionality of the dy-
namics may be of lower dimension.

The method we propose is a nonlinear approach to
dimensionality reduction of dynamical systems. The non-
linearity is achieved by the use of a neural network which
compresses the dynamics via a nonlinear parametrization.
We note that our goal is fundamentally different from the
studies which attempt to reconstruct the attractor without
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knowledge of a high-dimensional system of governing
equations. Neural networks have been applied extensive-
ly with very positive results for attractor reconstruction
and more generally time-series analysis where no high-
dimensional equations are available; see, e.g., [2-5]. The
problem of reducing the dimensionality of a given dynam-
ical description is extremely important and challenging
and how to best arrive at a system of low-dimensional
equations given a much larger system is an area of active
research [1,6,7].

Examples of the method we propose are presented for
the unforced Van der Pol oscillator, the forced Van der
Pol oscillator, and the Kuramoto-Sivashinsky equation.
This last equation offers an example of a twenty-di-
mensional system [obtained from a partial differential
equation (PDE)] whose stable attractor is diffeomorphic
to a circle; our neural network employs a single circular
node capable of modeling this topology.

We assume that we are given a system of ordinary
differential equations

u(t) =F(u) ¢))

the trajectories of which eventually lie on an attractor U
which is a subset of R”, i.e., u € UCR”". We postulate
that, as a topological space, the attractor U can be dif-
ferentiably embedded as a manifold ¥ CR™ in a lower-
dimensional space. The dynamical system or vector field
on U may then be transported to one on ¥V via the (typi-
cally nonlinear) embedding.

Let G be a nonlinear embedding which takes an ele-
ment of the attractor in U to an element in V. Specifi-
cally

G:U—V
is given by
0 (1) =G (u()).
The assumption that G is a differentiable embedding
implies that the induced vector field
n
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on V is topologically equivalent to the original dynamical
system on U (G is a homeomorphism of U onto V). If the
original equations F are known and the embedding func-
tion G is known then Eq. (2) gives explicit equations for
the dynamical system on the low-dimensional manifold V.
Hence it is the construction of such an embedding G
which offers a direct route to the dimensionality reduc-
tion for the original system.

Notice in Eq. (2) that the value of u(¢) is required in
the expression for the low-dimensional vector field equa-
tions. Hence an inverse to G (giving u € U as a function
of coordinates on V) is needed for (2) to be useful.

Suppose that we have a mapping

H: V— WCR"
defined by
W[(I) =Hi(l'(t)),

which is an approximate inverse of G. The space W may
be viewed as a reconstruction of the flow in the original
parametrization, namely, that U= W or in other words
u,-(t) = W,'(I).

The nonlinearly transformed dynamical system on the
manifold V is then given by

where j=1,...,m. Hence this formulation has reduced
the original system of n equations to a smaller system of
m < n equations on the manifold V.

Below the empirical construction of these mapping
functions will be presented.

The presentation given above assumes that the spaces
U and V are connected by a pair of mappings G and H
which enables us to derive a reduced set of dynamical
equations. Cybenko [8] has shown that finite sums of
sigmoidals, i.e., functions o(x) with the property that
o(x)—0 as x— —o and o(x)— 1 as o(x)— o are
dense with respect to continuous functions on the unit
cube. Thus we can approximate any mapping G from U
to another space V of dimension m by the superposition
of sigmoidals

Ny n
vi= 2, wjio| 2, Wijux —0; | — 6, (4)
j=1 k=1
where i=1,...,m and o(x)=[+exp(—x)]1"".

Cybenko’s result suggests that a neural network with one
hidden layer can construct a mapping G to any desired
accuracy. The error in the approximation is reduced as
we increase the number N, of nodes in the hidden layer.
One possibility for constructing G and H is based on a
neural network architecture originally proposed by Kra-

Y. n .
—li;—t’ -AZ ZG’ Fi(H@())), 3) mer [9] as a nonlinear principal component analyzer for
(1) =1 OU; data analysis problems. The network has the general
b form
input mapping bottleneck demapping output
layer — { layer — layer — layer — 1 layer
n nodes Ny nodes m < n nodes M}, nodes n nodes

We identify the input data as being elements of the flow
of Eq. (1) and the space V as the output of the bottleneck
layer. The reconstructed data are generated at the out-
put layer. If one trains this network to reproduce the
identity function on the data set, the mapping obtained
from the input layer (of dimension n) to the bottleneck
layer (of lower dimension m) will be an invertible and
nonlinear modeling of the data set; this is the desired
mapping G. The mapping obtained from the second half
of the network, which maps the bottleneck layer to the
output layer, will be the approximate inverse H. It is on
the bottleneck manifold V that we construct the reduced
set of differential equations.

The network is presented with an ensemble of training
patterns which lie in U and is adapted until the output
approximates the input, i.e., w = u. Thus the network is
trained by adjusting the parameters in Eq. (4) so that the
quantity E =(||u —w||?) is minimized, where the angle
brackets denote averaging over the data ensemble. This
error is minimized using backpropagation [10] and a
standard conjugate gradient procedure [11]. We note
that other measures of error may lead to improved accu-
racy for G and H and/or reduced network training costs.

The forced Van der Pol oscillator is modeled by the

system

uy=ujz,

ur=—u+al(l —ufdus+pcos(yus) ,

1:43 =].
When B is zero this reduces to the unforced Van der Pol
oscillator in two dimensions; in this case the existence of a
stable periodic orbit has been shown for any a € R; see,
e.g., [12]. A phase portrait obtained via numerical in-
tegration of this system for ¢ =1, 8 =0 produces the limit
cycle shown in Fig. 1. Since this two-dimensional system
U CR? describes an attractor in the form of a limit cycle,
we should be able to compute the flow on a one-di-
mensional manifold V; specifically, ¥V =S.

The unforced Van der Pol oscillator possesses symme-
try which enables us to further reduce the domain on
which it is necessary to define the functions G and H.
Specifically, if u(t) =(u(t),u2(t)) €U then Tu €U

where I'u =(—u, —u,). Thus we construct the function
G (uy,u3) on its fundamental domain u,=0 and extend
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FIG. 1. The limit cycle solution of the Van der Pol equation
and its overlapping reconstruction.

this via symmetry to the entire plane. Thus on the funda-
mental domain we integrate the single equation
%-;a%fu(tH-(,?—u%aiz(t)lumzmo(m (5)
while for u2<0 we replace v(z) above with v(s)
=G(u(t)). For this example exploiting the symmetry
in this manner reduces the number of computations re-
quired to construct the mapping function G by a factor of
2. The role of symmetry here is merely to reduce the
computational expense of the calculations for the map-
pings G and H; it is an independent effect from the
dimensionality reduction which the bottleneck neural net-
work technique offers.
In Fig. 2 we graph the value of the bottleneck variable
v () evolved by integrating Eq. (5). The accuracy of the
reformulation may be determined by mapping v back
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FIG. 2. Evolution of v(¢) on the bottleneck manifold V.
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u(x,t)

FIG. 3. Trajectory of the forced Van der Pol and its recon-
struction.

onto the reconstructed attractor W. The reconstruction is
also displayed in Fig. 1 and it is seen to be nearly identi-
cal to the original curve.

Integrating the forced Van der Pol equation with a =1,
B=10, and y=3 produces a trajectory shown in Fig. 3.
The construction of the mapping functions G and H in
this case used a 3-20-1-20-3 bottleneck neural network
architecture. The reconstruction of the dynamics is also
displayed in Fig. 3 and is seen to approximate the original
trajectory quite well.

A more serious example is offered by the Kuramoto-
Sivashinsky partial differential equation

Uy duggr Falug + 5 (u,)2=0. 6)

A standard approach for numerically integrating this
PDE is based on using a Galerkin approximation to pro-
duce a large system of ordinary differential equations
[13]. We integrated ten complex equations which pro-
duce a limit cycle for (6) in R?°. This is displayed as a

FIG. 4. Numerical simulation of the KS equation for
a=84.0.
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FIG. 5. First complex mode of the reconstructed data for the
Kuramoto-Sivashinsky equation.

complicated structure with a broad Fourier spectrum in
physical space in Fig. 4.

A special type of neural architecture incorporating cir-
cular nodes which are capable of encoding angular infor-
mation [14] was used in a bottleneck neural network to
produce mapping functions G and H exhibiting inverse
diffeomorphisms from the limit cycle UCR? to ¥ =S
The reconstruction of first Fourier mode of the simulated
data is displayed in Fig. 5. In Fig. 6 we display the first
real input node values versus the first real output node
values; the fact that they lie on the straight line y=x
shows that the identity mapping is being well approxi-
mated. All twenty nodes exhibit the same accuracy.

In summary, we have presented an approach for reduc-
ing a given set of dynamical equations by means of a non-
linear transformation constructed empirically by a feed-
forward neural network with three hidden layers. The re-
sulting dynamical system is of lower dimensionality but
the solutions are qualitatively equivalent to the original
system. The approach is capable of producing low-
dimensional equations modeling the dynamics of the orig-
inal high-dimensional system. The approach was demon-
strated on the forced and unforced Van der Pol oscillators
and on the Kuramoto-Sivashinsky equation; in each of
these cases a single scalar equation on the bottleneck
manifold captured the dynamics.

The research is supported in part by the NSF under
Grant No. ECS-9312092.
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FIG. 6. Graph of the input versus output for the first real
mode of the Kuramoto-Sivashinsky equation.
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