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Pendular Alignment of Paramagnetic Molecules in Uniform Magnetic Fields

Alkwin Slenczka, Bretislav Friedrich, and Dudley Herschhach

Department of Chemistry, Harvard University, i 2 Oxford Street, Cambridge, Massachusetts 02I38
(Received 1 November 1993)

For paramagnetic molecules subjected to a uniform magnetic held, the Zceman interaction produces
widely tunable, aligned pendular states in which the molecular magnetic dipole librates about the field

direction. %e demonstrate such alignment by observing spectroscopic transitions at = l T involving the
A fbi excited state of Icl, and extract characteristic pendular eigenproperties that arise from the hybrid-

ization of field-free rotor states. Unlike the electric analog, magnetic pendular states can be created for
nonpolar molecules and molecular ions.

PACS numbers: 32.60.+i, 35.20.Bm

It has been recognized [1,2] and demonstrated [1,3-8)
that strong uniform electric fields can hybridize low rota-
tional states of polar molecules and thus create sui gen
eris pendular states in which the molecular axis is

confined to librate over a limited angular range about the
field direction. It has also been recognized [9] that such

a hybridization can be brought about for linear Hund's

case (a) or (e) molecules, by the interaction of their
body-fixed electronic magnetic moments with a uniform
magnetic field. In this Letter we present a prototype
spectroscopic experiment to demonstrate the magnetic
pendular states and their eigenproperties.

In addition to its role in producing oriented or aligned
molecules for studies of collision stereodynamics [10],
pendular hybridization can be utilized to advantage in

spectroscopy. This includes determining molecu)ar pa-
raineters [4,5,8], providing intermediate states with wide-

ly tunable energies [2,4,5,9], and making accessible states
otherwise forbidden by selection rules [4,5,8, 11]. Mag-
netic hybridization offers complementary chemical scope
to the electric version by virtue of its applicability to non-

polar paramagnetic molecules and ions.
Figure 1 shows our experimental arrangement. We

create magnetic pendular states of ICI(A IIi) by sending

a supersonic molecular beam of ICI(X'&+) into a uni-

form magnetic field between the pole pieces of a per-
manent magnet and pumping a fraction of the molecules
to the A rIi excited electronic state by a laser. By scan-

ning the laser wavelength within the A IIi-X'Zo band
and measuring the induced fluorescence we simultaneous-

ly probe the pendular states produced. The molecular
beam contains about 30% of ICl seeded in Ar and is

formed by expanding the gas mixture at 50 torr and 310
K through a glass nozzle 300 pm in diameter. The un-

skimmed cold beam is then passed between a pair of
NdFeB magnetic disks (IBS magnet; 25 mm in diameter
and 7 mm thick, remanence of 1.25 T) whose adjustable
distance is used to define the magnetic field strength P;
this can be varied up to 0.8 T, leaving a gap of about 5
mm. The molecular beam within the gap is illuminated
at right angles by the beam of a single-mode tunable ring

dye laser (Coherent 699-21); the collected fluorescence is

space filtered [12], fed into a fiber bundle (Oriel), and
detected by a photomultiplier tube (Hamamatsu 943-02).
The transitions were measured within the v' l9-v"

0 vibrational band of the A ni-X'Ep+ system (large
Franck-Condon factor, little overlap by lines from li con-
tamination in the beam [8]) and their hyperfine structure
was largely resolved (Doppler linewidth of = 100 MHz).
Figure 2 shows the fluorescence spectra at /'i t 0 and at
P 0.78 T excited with parallel and perpendicular linear
polarization (with respect to /f) of the laser. The ob-
served dramatic alterations of the spectra with field

strength are due to hybridization and lifting of the selec-
tion rules for changes in the total angular momentum

quantum number, J. The two high-field spectra differ
due to the change in the AN selection rule for parallel
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FIG. 1. Experimental setup. The unskimmcd supersonic
beam of IC1 seeded in Ar (T~ = 10 K) is passed through a gap
between a pair of NdFea magnetic disks whose adjustable dis-

tance is used to define the magnetic 6cld strength of up to 0.8
T. The molecular beam within the gap is illuminated at right
angles by the focused beam (6 W/cm ) of a tunable ring dye
laser; the collected Auorescence is space filtered, fcd into a Aber

bundle, and detected by a photomultiplier tube. Computer con-
trolled lock-in amplification is used to enhance the signal-to-

background ratio.
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bital and spin electronic angular momenta L and S on the
z axis, gL and gs are the respective gyromagnetic ratios

(gL-l, go=2.00229), and pg is the Bohr magneton.
The Schrodinger equation (I) becomes equivalent to that
for the electric case (leading to electric pendular states)
merely by replacing p& by the product of the electric di-

pole moment and electric field strength. Eigenproperties
as functions of co are readily determined by expanding
the wave functions in terms of the field-free solutions,
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FIG. 2. Observed and calculated laser-induced fluorescence
spectra from the v' l9-v" 0 vibrational band of the A3Hl-
X'Ep+ system of I Cl seeded in a supersonic molecular beam of
Ar. Upper panel: Field-free spectrum, together with four ab-
sorption bands of I2 used to calibrate the frequency scale; these
occur at 16652+hv, with hv 0.6312, 0.7232, 0.8847, and
0.9409 (in cm ') for a, b, c, and d [13], respectively. Middle
panel: Spectrum at field strength 0.78 T, for linear polarization
of laser perpendicular to field. Calculated stick spectra (see
text) are sorted into bands labeled by J' —J"; within each such
band, the lines (from left to right) arise from M' J"+1 to
—J"—

1 for hA=O' —0" +1; the lower and upper bars indi-

cate hM-=M' —M" +1 and —1, respectively. Lour panel:
Spectrum at 0.78 T, for polarization parallel to field. Within
each J' —J"band M" M' J", . . . , —J" frgm left to right for
60 +I. Note that each perpendicular as well as parallel
transition has a twin; see text. Within the field, co" 0 and
co' 5.82; see Table I. The specimen transitions used in Table
II are indicated by arrows.

and perpendicular polarization of the laser.
For a rigid linear molecule in a uniform magnetic field

/f the Schrodinger equation is

(J —0 —racos19) (J, O, M;ra) E(J, Q, M;ra)

with J the square of the total angular momentum
(rotational+electronic, but excluding nuclear spin), J,

0 the projection of the electronic angular momentum
on the molecular figure axis z, 8 the angle between z and
'P, and ape%/B the dimensionless parameter which
measures the potential energy of the magnetic dipole p in
units of the rotational constant, B In Hund's cas. e (a)
the modulus of the body-fixed magnetic dipole moment
endowed by the electronic angular momentum is p.
=—(gLA+gsZ)p3 where A and X are projections of the or-

to obtain algebraic equations for the Fourier coefficients

aJEI(ra); these can be solved with arbitrary accuracy by
standard methods [5]. The eigenfunctions of Eq. (2) are
thus linear superpositions or IIybrids of the field-free sym-
metric top wave functions i J, Q, M) for fixed values of the
good quantum numbers 0 and M; the range of J involved

increases with the m parameter. The eigenstates are la-
beled by J, i 0 i, M where J denotes the nominal value that
pertains to the field-free rotational state which adiabati-
cally correlates with the high-field state, iJ,0,M;aI

0) jJ, Q, M), cf. the correlation diagram in Ref. [9].
In the high field limit, ca , the hybrids correlate with
harmonic librator states whose spacing corresponds to the
same harmonic frequency. This limit is attained for
states with J ~ 1 at about aI 5 and at about ra 100 for
J 5. However, for, e.g., 0 1 at co 6, there are five

pendular states bound by the cosine potential, two of
which have negative energies with respect to the correlat-
ing field-free states. Contrary to the first-order Zeeman
effect, the energy dependence of pendular states is non-
linear in ai and for the negatively bound states it de-
creases with increasing field strength. The sign of the
magnetic dipole moment is determined by the sign of the
projection 0; consequently, for given nonzero M, 0, and
aI, there are just 2 sign combinations giving rise to a
quadruplet of states consisting of two isoenergetic dou-
blets. Within each doublet the states differ by the sign of
0 and hence ra and are equally populated in an equilibri-
um ensemble. For either M or 0 equal to zero there is

just a doublet of isoenergetic states. We refer to this
scheme as the "MO rule. " The body-fixed magnetic di-
pole moment can be nonzero even for 0 0, due to the
anomalous electron spin such as occurs within a Hund's
case (a) II0 manifold [9]; the corresponding pendular
states would then coincide with those of a linear polar 'Z

molecule in an electric field.
For the X and A electronic states of ICI we have re-

spectively 0" 0, p" 0, and 0' 1, p' 1 pg. Conse-
quently, the pendular hybridization only occurs for the 8
state, iJ', O', M';r0'), while within the X state manifold
there are just field-free rotor states, iJ",O, M";aI"=0)

i
J",O, M"). For radiative transitions between a pair of

such states, i
J', O', M';co')-( J",0",M"), the line strength

factor [8,14] is given by
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TABLE I. Parameters for calculation of I Cl spectra.

X, v"=0 Reference

Rotational constant
Magnetic dipole moment
Interaction parameter

B" 0.113891 cm
p" =0

co =0.4668ps/i'(T&/B (cm

B' =0.062 510 cm ' [15-171
p'=1

s = (2J"+ 1) g alii sr (co') (2J'+ 1 )
J',q, g

J" 1 J' J" 1 J'
—M" QM' —0" q 0' (3)

Here Q=0, +' I designates the spherical components in

the space-fixed frame of the electric field vector eg of the
radiation and q 0, + 1 those in the body-fixed frame of
the transition dipole operator pq for the molecule; these
are taken as unit vectors, )eg) =(pv( =1. For the experi-
mental excitation or detection geometry of Fig. 1 and
laser polarization parallel and perpendicular to the z axis,
the only nonzero components of the photon angular
momentum occur respectively for Q =0 and for Q = ~ 1.
Furthermore, in transitions between the A and X states of
ICl there is 0' ~ 1 and 0" 0, corresponding to a per-
pendicular transition dipole moment with nonzero com-
ponents for q ~1. Hence the 3-J symbols in Eq. (3)
specify that the allowed transitions have d,M 0 (parallel
polarization) or hM +'

1 (perpendicular polarization)
and AQ ~ l. However, the ajar coefficients intro-
duced by the field-induced hybridization of J states give
rise to nonzero transition probabilities between states that
differ by more than unity in their nominal J values. Al-

though the 3-J symbols vanish unless AJ=0 or + 1, the
sum over the hybrid components links states more distant
in nominal J, and increasingly so as the parameter (ro( in-

creases. This enriches the spectra with many transitions
that would be forbidden in the absence of the hybridizing
field. The parity selection rule is also lifted by the hy-

bridization; however, this does not introduce any new

transitions involving states with 0&G as their field-free

parity is indefinite [11].
The stick spectra included in Fig. 2 were calculated

from this theory. The eigenvalues and expansion coeffi-

cients for the eigenfunctions for the A state of ICl were
obtained from Eq. (1), while for the X state we used
free-rotor eigenproperties. The molecular parameters
employed are given in Table I. For all transitions occur-
ring in the observed frequency range, the line strengths, s,
were evaluated from Eq. (3). The initial populations,
~J", were derived from the field-free spectra; they were
found to correspond to a rotational temperature of about
10 K. The stick spectra show the calculated energies,
(F' E")/8, and intensities, I—its, of the transitions be-
tween the field-free rotor states (from within the X, v" =0
manifold) and the pendular states (from within the A,
v' 19 manifold). The band origin [15], v0 =16652.790

cm ', corresponds to our abscissa origin at (F' —E")/
B"=0. The hyperfine structure, which is predominantly
due to the quadrupole moment and spin of the iodine nu-

cleus [15-17],has been omitted in this analysis; neverthe-

less, the assignment of the peak groups or broadened lines

to the calculated transitions is unequivocal. The stick
spectra are sorted into bands labeled by J' —J"; these in-

volve respectively even and odd numbers of transitions for
d,M = ~ 1 and LLM 0. This is not apparent in all of the
bands since some of the transitions overlap. The hN
transitions with 60 +1 and dQ = —1 are not coin-
cident in the spectra. When the field is present (ro&0),
states with the same J and M but 0 + 1 differ in both

energy and wave function, according to the MQ rule.
The corresponding pair of transitions,

and

)
J', I,M';~'& -

I
J",O, M")

I
J', —I,M';re'& —

I
J",O, M"),

(4a)

(4b)

occur at different frequencies and with different probabil-
ities. At the same time, the MQ rule ensures that the
transitions of Eq. (4) each have an indistinguishable twin:

for (4a) an equivalent transition is )
J', —1, —M';ro')

)
J",0, —M"); for (4b) it is )

J', +1, —M';co') (J",0,
—M").

Table II illustrates typical pendular properties for two

examples. These properties include a violation (here
AJ 2) of the usual field-free selection rule; the extent of
alignment (specified by )(cosH&)), and the energy shift

(given in units of the ground-state rotational constant).
Note that individual molecules are oriented, with the
sense depending on the sign of the magnetic dipole mo-

ment p, but the ensemble as a whole is only aligned [9].
This is a consequence of the situation summarized in the
MQ rule described above. Thus, molecules with positive

and negative p cannot be separated by state selection us-

ing a Stern-Gerlach field because the deIIection is propor-
tional to p(cos8&, which is positive definite. Optical tran-

0,0,0 2,0, ~1
1,0,0 3, + 1, 1

2 0.008497
2 —0.19388

0.08446
0.43365

TABLE II. Properties of observed specimen pendular states.

Transition
J" O" M"- J' O' M' m &basal' (B& „~—Z; „)/B"
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sitions between states with diA'erent signs of 0 are prohi-
bited for iOi) I, since they would require ihQi ~ l.
Such transitions are also usually forbidden for iQi =

2

=S, by the spin selection rule, although this is sometimes
relaxed. Therefore, ordinarily pairs of ~ 0 states behave
like racemic mixtures of isomers, not inconvertible by
electric dipole radiation or separable by external fields.

%e also probed the B Ho states of ICl and I2 under the
same experimental conditions, but observed no discernible
field-induced spectral changes. In the case of Iz, the spec-
tra were recorded at a resolution of 10 MHz, which
confirmed the lack of any shifts or broadenings of the
quadrupole hyperfine structure with magnetic field. The
absence of a body-fixed magnetic moment indicates that
Hund's case (a) coupling does not contribute signifi-
cantly. This is particularly surprising for ICl, as the 8
state has been considered [17] as intermediate between
Hund's cases (a) and (c).
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