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A General Limitation on Monte Carlo Algorithms of Metropolis Type
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We prove that for any Monte Carlo algorithm of Metropolis type, the autocorrelation time of a suit-
able "energy"-like observable is bounded below by a multiple of the corresponding "specific heat. " This
bound does not depend on whether the proposed moves are local or nonlocal; it depends only on the dis-
tance between the desired probability distribution x and the proability distribution x for which the
proposal matrix satisfies detailed balance. We show, with several examples, that this result is particular-
ly powerful when applied to nonlocal algorithms.
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Forty years ago, Metropolis et al. [1] introduced a gen-
eral method for constructing dynamic Monte Carlo algo-
rithms (= Markov chains [21) that satisfy detailed bal-
ance for a specified probability distribution tr. In this
Letter we would like to point out a general limitation on
all algorithms of Metropolis type. We prove that the au-
tocorrelation time of a suitable "energy"-like observable
is bounded below by a multiple of the corresponding
"specific heat. " This bound does not depend on whether
the proposed moves are local or nonlocal; it depends only
on the distance between the desired probability distribu-
tion tr and the probability distribution tr for which the
proposal matrix satisfies detailed balance.

Let us begin by recalling the general Metropolis et al.
[1] method, as slightly generalized by Hastings [3]. We
use the notation of a discrete (finite or countably infinite)
state space S, but the same considerations apply with
minor modi6cations to a general measurable state space.
Let P =[p„«] be an arbitrary transition matrix on S.
We call P the proposal matrix, and use it to generate
proposed moves x y that will then be accepted or re-
jected with probabilities axy and 1

—a y, respectively. If
a proposed move is rejected, we make a "null transition"
x X. The transition matrix P=[p «] of the full algo-
rithm is thus

(o)
pxy axy for x&y,

P"« ='
p„',"+g p„',"(I—a„) for x =y,

zAx

where of course we must have 0» axy 1 for all x,y. It
is easy to see that P satisfies detailed balance for tr if and

only if

(o)
axy n'y pyx

(o)
ayx &xpxy

for all pairs x~y. But this is easily arranged: Just set

(o)
&ypyx

axy =F (o)
, &xPxy

where F: [0,+~] [0, 1] is any function satisfying

F(z) =z for all z.
F lz

The choice suggested by Metropolis et al. [I] is

FM,t, (z) =min(z, 1 ) .

(2)

(3)

(4)

(s)

Other choices of F are possible, but it is easy to see that

they must all satisfy the inequality

F(z) ~ min(z, 1) .
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Of course, it is still necessary to check that P is irreduc-
ible (= ergodic); this is usually straightforward.

Note that if the proposal matrix P happens to
already satisfy detailed balance for n, then we have
)r~p)„)/)r„p„(~0) = 1, so that a„~ =1 (if we use the Metropo-
lis choice of F) and P=P . On the other hand, no
matter what P is, we obtain a matrix P that satisfies
detailed balance for z. So the Metropolis procedure can
be thought of as a prescription for minimally modifying a
given transition matrix P so that it satisfies detailed
balance for z.

Let us now assume that P satisfies detailed balance
for some probability measure x(; in practice this is vir-

tually always the case. We then define an energylike ob-
servable H by

log(n-„/z„' ') if )r„&0,
H(x) = & (7)

Z

The point is that H is the "energy" of the probability dis-
tribution z relatic e to x

The heart of our argument is the following upper
bound on the mean-square change in energy in a single

~here

(8 8

e
(s)

x,x
H(x') )H(x)

(0) ~&xp ™1

is the fraction (in equilibrium) of proposals that would
strictly increase the energy.

Proof Sinc.—e P satisfies detailed balance for )r, the
summand in (S) is symmetric under x x'. Therefore it
su%ces to consider the terms for which H(x') & H(x),
and to multiply the result by 2. [The terms having
H(x') =H(x) of course make no contribution to the
sum. l

If H(x') & H(x), we have a„„~e " '
by (3)

and (6). Therefore

step of the Metropolis algorithm.
Proposition. —In the situation described above, we al-

ways have

&(AH)'&=—g x„p„„[H(x')—H(x)l'
X,X

X,Z
H(x') & H(x)

z p„[H(x') —H(x)]'=
x,x

H(z') )H(x)

x„p,'„'a,„[H(x') —H (x )] '

)r p
( )e (H(x ) (Hx) [H1( x) H(x)] 2

( (io)
X,Z

H(x') & H(x)

c,„(r)=&a,w, +, &
—&w&2

-gA (x) [)r, (P ~'~)„y —)r„)ry]A (y) .
x,y

(1 i a)

The corresponding normalized autocorrelation function is

since z e '(4/e for ail z~ 0.
The physical intuition behind this proof is simple: Pro-

posed moves having a iarge energy change hH & 0 have

an exponentially small acceptance proability, so the
mean-square energy increase &(hH)+& in a single

Metropolis step is at most of order 1. Proposed moves

having an energy change AH & 0 are connected to those
with /t H &0 by detailed balance: When proposed they
are accepted, but if IAHI is large they are only rarely
proposed. The result is that the mean-square energy
change in either direction is at most of order 1.

Let us now recall the definitions of autocorrelation
functions and autocorrelation times [4]: If A is a real-
valued function defined on the state space S (i.e., a real-
valued observable), we define its unnormalized autocorre-
lation function (in equilibrium) by

1

rint, A g p»(f),
2 t

&exp A llm sup
lr I

—Ioglp»«) I

'

&exp SuP &exp, A
A

Some simple identities are worth noting:

C»(0) =&A'&. —&A&2,

(i 4)

(i5)

(i6a)

(is)

C»(t ) C»(0) —
2 g x„p„„[A(x')—A(x)] . (16b)

X,X

Also, from detailed balance combined with the spectral
theorem one can deduce the following inequalities:

i 1+p»(I)
& int, A — r (i7)

PAA &1&

r exp —&exp, a ) I/log Ip» (I ) I

(see, e.g. , [5], Appendix A).
With these preliminaries, the following theorem is an

immediate consequence of the proposition.
Theorem Under the p.

—receding hypotheses, we have

p»(r) =C»(r)/C»(0) . (i 2) e var(H) 1

lttt, H— (i9a)
The integrated and exponential autocorrelation times are
then defined by r,„~) —1/log[1 —4f+/e var(H)],
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Now use (17) and (18).
Again the physical intuition is simple: The mean-

square energy change per Metropolis step is at most of
order l. On the other hand, in order to sample adequate-
ly the probability distribution n; the Markov chain must
traverse an energy distribution of width -var(H)'t.
This takes a time of order [var(H) 't ] -var(H).

Single-site Metropolis algorithm —Her. e x is the a
priori measure for the spins, and H is the full Hamiltoni-
an. P+1 selects a spin at random and proposes to update
it in some way that satisfies detailed balance for x . We
have var(H) VCt„where V is the volume and Ct, is the
specific heat. So the theorem shows that

&int, H~ &exp, H ~ & ~h ~ (21)

where time is measured here in hits of a single site; or
equivalently r Ct, when time is measured in "sweeps. "
This is a well-known result. However, it is a rather poor
bound because the energy, being a short-distance observ-
able, has a rather weak overalp with the slowest (long-
wavelength) modes of this local dynamics. (A much

stronger bound can be obtained by using the magnetiza-
tion At rather than the energy as the trial function: one
gets r;„t ~, i,„p ~ Vg, where g is the susceptibility
[4 6].)

The real power of the theorem comes when it is applied
to nonlocal algorithms: It still yields r) VCh, but now

the unit of time (a "hit" of P ) is a nonlocal move

which costs a CPU time »1. As a result, several algo-
rithms which a prion look promising must in fact per-
form rather poorly:

q state Pott-s model with mixed ferromagnetic/anti
ferromagnetic interaction [7].—The purely ferromagnet-
ic Potts model can be simulated very efficiently by the
Swendsen-Wang (SW) algorithm [8,9] or its single-
cluster (1CSW) variant [10,11], but these algorithms do
not extend easily to the mixed ferromagnetic/antiferro-
magnetic case. One might therefore try using the SW or
1CSW algorithm for the ferromagnetic part of the Ham-
iltonian as a Metropolis proposal for the fu11 theory.
Thus, let n (n) be the Gibbs measure for the ferromag-
netic (full) theory, so that H is the antiferromagnetic
part of the Hamiltonian. Let P be any algorithm that
satisfies detailed balance for n (for example, SW or
ICSW); and let P be the corresponding Metropolis algo-
rithm for n. One expects var(H) to behave near criticali-
ty as -J,fVCh, where J,f is the antiferromagnetic cou-
pling. So the theorem shows that

&int, H. &exp, H ~ JafVCh ~
) 2

where var(H)= (—H ) —(H) .
Proof. —From the proposition together with (16), we

get

Ctttt (0) 4
Pttn(i) —=

Ctte&» e var(H)

where time is measured here in hits of P . For SW
(1CSW), each hit takes a CPU time of order V (g). So
the proposed algorithm must perform quite poorly, except
when J,t is very small [12].

d 3 Heisenberg model with topological term [13].—The ferromagnetic Heisenberg model can be simulated
very efficiently by the Wolff embedding algorithm [10,14]
using either SW of 1CSW moves to update the induced

Ising model [15]. The topological term seems difficult to
incorporate into the cluster-algorithm framework, but one
might try using the SW or ICSW algorithm for the fer-
romagnetic two-body part of the Hamiltonian as a
Metropolis proposal for the full theory. (The intuitive
idea is that a 1CSW move is likely to make a modest
change in the topological-charge field, so the acceptance
rate should be reasonable. ) Thus, let n (n) be the
Gibbs measure for the ferromagnetic (full) theory, so
that H is the topological term. Let P ~ be any algorithm
that satisfies detailed balance for n (for example, SW
or ICSW); and let P be the corresponding Metropolis al-
gorithm for tr. One expects var(H) to behave near criti-
cality as —J&»VCI„where J«p is the topological coupling
[16]; and it is known that Ct, const) 0 at criticality
(since a (0). So the theorem shows that

rztint, H~ fexp, H ~ & tpp~ (23)

where M(to) is the number of nonbonded nearest-
neighbor contacts in the walk co. Let P be any algo-
rithm that satisfies detailed balance for n 1 (e.g., the
pivot algorithm [17,18]); and let P be the corresponding
Metropolis algorithm for (24). Then the theorem shows
that

&int, N &expIit e vara(, ~)lf (25)

where f is the fraction of proposals pi with to'Pro (e.g. ,

the fraction of proposed pivot moves that preserve self-
avoidance). And we expect var (M) =NC(e), where the
"specific heat per step" C(e) is everywhere nonzero and

diverges like (e ee) at the theta (tricritical) point.
For the pivot algorithm, the bound (25) is a rather

weak result: In fact we expect that r;„~~,r,„txjit-N/f
even for e=0, because M is a "primarily local" observ-
able [18]. But (25) does show that for e&0 (and in par-
ticular for e ee) the difficulties cannot be avoided by

where time is measured here in hits of P . For SW
(1CSW), each hit takes a CPU time of order V (g). So
the proposed algorithm must perform quite poorly, except
when J«p is very small.

Self avoiding -walk with nearest neighbor -interac
tion Fix an .—integer N, and let S be the space of all N-
ste self-avoiding walks on some specified lattice. Let
n be the probability measure that gives equal weight to
each element of S. Then define the probability measure n

by

(24)
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using a diff'erent proposal P; they are inherent in the
Metropolis method with this choice of n [19].

%'e conclude by noting that the Metropolis et al.
method is often applied indirectly: We define transition
matrices P~, . . . , P„by the Metropolis method, and we

then execute either P =g,"--t)t;P; for some weights A, ; ~ 0
("random updating") or else P=Pt P„("sequential
updating"). The first case can easily be handled by our
method. The second case is more subtle, because typical-
ly P does not satisfy detailed balance [20]; but the bound
is almost certainly correct in order of magnitude, except
in special situations like "successive overrelaxation" [21].
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