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Critical Phenomena and Self-Similarity in the Gravitational Collapse of Radiation Fluid
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We observe critical phenomena in spherical collapse of radiation Iluid. A sequence of spacetimes g[tt]
is numerically computed, containing models (t) « I) that adiabatically disperse and models (rt» I) that
form a black hole. Near the critical point (rt, ), evolutions develop a self-similar region within which col-
lapse is balanced by a strong, inward-moving rarefraction wave that holds m(r)/r constant as a function
of a self-similar coordinate g. The self-similar solution is known and we show near-critical evolutions

asymptotically approaching it. A critical exponent P=0.36 is found for supercritical (rt & rt, ) models.
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New solutions of Einstein's equations at the threshold
of black hole formation have recently been discovered.
These solutions exhibit nonlinear dynamical behavior
closely analogous to critical phenomena, and include
power-law behavior, discrete scaling relations, and a form
of universality. All of these features were discovered in

Choptuik's [I] studies of spherical collapse of massless
scalar field. Abrahams and Evans [2] found strikingly
similar behavior in axisymmetric collapse of gravitational
waves, indicating the behavior is a generic feature of
gravity. Confirmation has recently been made [3] of
some of Choptuik's results. In this Letter, we report ob-
servation of critical phenomena in spherical collapse of
radiation fluid and show the asymptotic approach of
near-critical spacetimes to a self-similar solution near the
center of collapse. This new result is fundamental in two

ways; the self-similar solution has been separately and

precisely calculated [4], and it exhibits local self-simi-
larity.

The process for finding the threshold of black hole for-
mation and critical phenomena in gravitational collapse
has been described elsewhere [1,2,5,6]. Adopting a phys-
ical model with metric g, matter fields p~, stress energy
T(lt~), and symmetries, the future development is com-
puted of elements of a family of Cauchy data, dis-
tinguished by a dimensionless strength parameter g and a
length (or mass) scale rti. Subcritical models (t)« 1)
have smooth future development, dispersing all mass en-

ergy to infinity, while a black hole appears in supercritical
models (ri» I ) with only some mass energy escaping. As
ri is tuned in a search for the onset (at tI, ) of black hole
formation, black hole mass (for ri& ri, ) diminishes as a
power law: MaH K(t) —ri, )P, with P & 0. In both scalar
field collapse [1] and vacuum collapse [2,5], simulations
give p=0.37, results that appear to be universal (i.e., in-

dependent of the parametrization of the initial data).
By implication, tuning the parameter to just the right

value (ri=t), ) creates arbitrarily small black holes and
regions of arbitrarily high spacetime curvature from
smooth Cauchy data. Hence, it is argued [6] that the
threshold of black ho1e formation is also the threshold of
naked singularity formation. Spacetimes with g g, are

termed precisely critical.
In any physical model, many families of Cauchy data

may exist with a critical point and a precisely critical
spacetime. Each family of data will have a characteristic
proper length scale ro. Related to this scale is the limit-

ing interval, lim~T~ ~Tn~, as ri
—t), 0+, of proper

time T of the observer 6 centered in the collapse. Let
T —To correspond to the initial data. Further, let r be
a proper spatial distance from 6. The central region of
collapse .8 (in spacetime) exists for r«rp, ~T~ && ~Tp~.

Different precisely critical spacetimes can be normalized,

using scale invariance, to a common length scale ro.
These spacetimes will still difler on scales T- —To and
r-rn but approach a (physical model specific but other-
wise unique) self-similar solution within R. Within R,
all knowledge of the initial data is lost up to a single, di-

mensional constant.
Previous critical systems have displayed discrete self-

similarities. Let q denote dimension and let length have

q 1. Allow the metric g to carry dimension q=2 [7].
For t) = t)„, within R a map will exist under which

I g'=e I, for a fixed value of h, . These are echoes
resulting purely from nonlinearities. The scale factors 5
are pure numbers that emerge from the dynamics, with

e =30 in scalar wave collapse [1] and e =1.8 in gravi-
tational wave collapse [2,5].

An analytic explanation of these phenomena would be
important. This has been sought for scalar field collapse
but the discrete self-similarity proved to be an impedi-
ment. The eft'ort made obvious, though, that a local self-
similarity would be more powerful, and suggested exam-
ining another system: perfect fluid collapse.

Imagine a spherical configuration of radiation fluid

confined within areal radius ro. Let the total gravitation-
al mass be M. Define a dimensionless control parameter

g 2M/ro [8]. When ri «1, pressure dominates and

should cause adiabatic expansion and dispersal of the
fluid. When g~ 1, gravity should overwhelm pressure
and spur the formation of a black hole. The onset of
black hole formation should occur at some g, —1. One
might anticipate, with a fluid, that any self-similarity
emerging near g, will be local.
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with a(r, t) the lapse function and a(r, t) the radial
metric function. Constant proper sound speed c, =Jp/p

Jy —I suggests the self-similar ansatz: a((), U'(g),
p(r, t) &(g)/4', a(r, t) nrem(g)/t, with self-similar
coordinate g r/C( t)-" Ge. ometrically, w (I/n)t 8/Bt
+r8/Br is the infinitesimal generator of the homothetic
motion: k g 2g, EwT 0 Th.e similarity exponent n is

initially unknown, making the problem (in these coordi-
nates) a type-2 self-similarity [9]. With this ansatz, the
Auid and gravitational equations reduce to ordinary
differential equations. These are solved by demanding
regularity at g 0 (r O, t (0), g=~ (1 )O, r 0), and
along the limiting, ingoing acoustic characteristic (sonic
point) at g I, across which the fluid might otherwise be
discontinuous. The system is overdetermined unless n is

taken as an eigenvalue of the nonlinear system. An
analogous type-2 similarity problem is Guderley's shock
implosion problem [10].

The similarity exponent was found to be n=1.1485
(y —, ). The solution is depicted in Fig. 1. A physical
singularity exists at r 0, t 0, since R„„R"" '3 x p—T and central proper time T-(—r)". Notice that
a does not approach unity as g ~, but rather ap-
proaches a=1.07. Likewise, mass grows linearly with
distance, with m(r)/r 0.0596 and 0 9.56& IO, so
the solution is not asymptotically Aat. An asymptotically
flat spacetime would require truncating the self-similarity
at some larger r [11]. Nonetheless, the self-similar solu-
tion is anticipated to represent the asymptotic behavior
within R (i.e., as r 0, t~ 0).

To confirm these expectations, we compute a series of
models of spherically symmetric collapse of radiation
fluid, searching for a critical point and critical behavior.
We adopt polar time slicing and radial gauge, retaining
the form (I) of the line element, and assume a radiation
Auid. We define W=—aU' and U—=aU", with which the ve-

locity normalization becomes 8' = 1 +U . Then, the
equations of motion of the fluid, V„T""=0,are

8
(ap W) + (r apU)

I 8
81 I2 Br

+p (aW)+ (r aU) =0,8 I 8
Br rz Br

(2)

A successful attempt was made to find a self-similar
solution representing the threshold of black hole forma-
tion in perfect fluid collapse [4]. Details of this solution
will be given elsewhere; here we only describe the self-
similar ansatz and a few numerical results. We assume a
perfect fluid T""=pU"U"+pg"", with total energy densi-

ty p, isotropic pressure p, and four-velocity U" satisfying
U„U" —l. A relativistic equation of state p (y —1)p
is adopted. In this paper, we specialize to radiation fluid

p —,
' p. Adopting (dynamical) Schwarzschild coordi-

nates, the line element is

$2 ~ a2dl 2+0 2' + p dQ
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FIG. I. Self-similar radiation ffuid collapse. Fluid and
metric variables are plotted versus self-similarity coordinate

r/C( t)" (with n—=1.1485): (I) radial metric function
a(g) (solid), (2) velocity V(g) aU'/aU' (dotted), (3) O(g)

4nrip (dashed), and (4) lapse function a nrN(f)/t (dot-
dashed). Note the collapsing interior and expanding exterior
regions.

+ (a —I ) 4n~a p[yW —y+ I], (4)
18a I

a Br 2r

(a —I) 4@ra p[yU +y —I],18a I

a Br 2r

with y —, adopted in the models we discuss here.
To construct a parametrized family of evolutions, we

choose Cauchy data by specifying that the fluid be instan-
taneously at rest V=U/W 0 and have an energy density
profile

(5)

p- —,
' n '~pro 2riexp( —r2/r$),

parametrized by g and ro. The total gravitational mass is
M 2 rirq, so that ri 2M/ru is a dimensionless measure
of the strength of the initial gravitational field, while ro is
the typical initial length scale. Equations (4) and (5) are
solved to complete the Cauchy data.

The dynamical behavior of these models is consistent
with expectations. For y 3 and this family of Cauchy

[a (p+p) WU]+ (r aa(p+p)U ]8
t r2 Br

r

+aa(p+ p) W — —U — +aa 0, (3)21 Ba z I Ba Bp
a Br a Br Br

pressure is p —,
'

p. In these coordinates, the
gravitational field equations G", 8nT', and G'g

become
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FIG. 2. The mass function m(r) (solid) at a late time in a

supercritica) evolution. Polar time slices limit outside the hor-
izon producing the kink near where the function approaches the
curve (dotted) r 2m(r), locating the surface of the black hole
and determining the hole's mass. At late times, the fluid bifur-
cates and forms an evacuated region immediately beyond the
hole, indicated by the decrease of ti 4mr2p (dashed) outside
the hole. At larger radii, escaping fluid expands outward.

data, the critical point is found in a bisecting search to be
near ri, = 1.0188. For ri) ri„ the impending formation
of a black hole is observed. As is well known, polar time
slices avoid penetrating regions of trapped surfaces [12]
and asymptotically approach the apparent horizon in col-
lapsing spacetimes. When this occurs we have clear evi-

dence of a black hole forming. Figure 2 illustrates the
form of the mass function m(r) —,

' r(1 —a ) late in a

supercritical evolution. The "kink" where r=2m(r) lo-

cates the surface of the black hole and determines the
hole's mass MiiH. Immediately beyond the kink, m(r) is

nearly constant indicating an evacuated region that forms
around the black hole. At larger radii, additional mass is

evident, representing the fluid which did not collapse and

is expanding outward.
Black hole mass MaH is found to be well described by

a power law (see Fig. 3)

MaH =K(tt —ri, )&, (7)

with a critical exponent p=0.36. This critical exponent
~alue is numerically indistinguishable from those found in

scalar wave collapse [1] and gravitational wave collapse
[2], doubtlessly reflecting a deep property of the gravita-
tional field equations.

The fluid is initially everywhere out of equilibrium. In
near-critical models, the fluid in the inner region collapses
while that in the outer region accelerates and expands
outward. The collapsing central region is chased by a
strong, ingoing rarefaction wave. As the radius R(t) of
the inner region diminishes, the rarefaction wave causes
the mass to diminish also, keeping m(R(t))/R(t) nearly
constant. The radius R(t) of transition between collapse
and expansion (edge of the rarefaction wave) decreases

FIG. 3. Critical behavior of black hole mass. For g& q„
MIH is determined and fit to a power law of the form (8). Here
log of MIH is plotted versus log of the critical separation g

—g, .
The power-law fit is indicated by the solid line and is deter-
mined by rt, 1.018828234, K 3.27, and P 0.36. We obtain
black holes with masses down to MBH=0.001NppM and the
scaling law (8) is seen to hold over 2 orders of magnitude in

mass. Simulations with discretization scales of 3.3&10 and
1.0&10 3 are included in the plot, using open and filled circles,
respectively.

by several orders of magnitude in very-near-critical mod-

els. On fine scales, r «ro, the fluid and gravitational field

assume a self-similar form (see Fig. 4). Furthermore, the
self-similar form being approached is the locally self-

similar solution outlined above. As Fig. 4 shows, ulti-

mately the self-similarity of the collapse is broken if

g&ri, . Only a precisely critical model would approach
the self-similar solution and retain this dependence as

r 0, t 0. Near but not precisely critical spacetimes
develop a self-similar region on scales r &(ro but they lose

self-similarity on a scale determined by proximity in pa-

rameter space to the critical point: r i
=Ki ri

—ri, )
~.

Self-similarity will only be apparent if r i « ro.
Approach to self-similarity within a region spanning

two disparate scales is a familiar concept in hydrodynam-

ics termed "intermediate asymptotics" [13]. The cardi-

nal example is the modified Sedov-Taylor blast wave

problem. Besides the usual Sedov-Taylor parameters of

Eo, the blast wave energy, and po, the ambient gas densi-

ty, the modified problem has a length scale ro, within

which the energy Fo is arbitrarily distributed initially,

and has a small pressure po in the ambient gas. This
small pressure introduces a second, new length scale:

ri =(Eolpii)'t ))ro. These two additional dimensional

parameters break the self-similarity of the blast wave on

length scales r + ro and r ~ r] but on intermediate scales

the solution aymptotically approaches the Sedov-Taylor
self-similar form. There is a direct analog in the behavior

of near-critical spacetimes on scales between ro and r [.
The self-similar solution determines the asymptotic

properties of precisely critical evolutions. Linear stability
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FIG. 4. Intermediate asymptotic approach of a near-critical
evolution to self-similarity. The metric function a(r) (light
curves) at a series of times, equally spaced in logarithm of cen-
tral proper time r log( —T), obtained from a near critical
evolution. The rightmost curve is near the beginning of the
simulation and resembles a(r) in the Cauchy data. As collapse
proceeds, the peak of a(r) shifts to progressively smaller scales.
The metric and fluid approach the self-similar solution depicted
in Fig. I. The self-similar form of a(f) (see Fig. I) is overlaid
at r —0.5, clearly indicating approach to self-similarity. At
later times, self-similarity is broken as a black hole begins to
form and a on the horizon.

analysis should reveal the perturbative response of solu-
tions nearby g, in parameter space and thereby perhaps
provide an estimate of the critical exponent P. The self-
similar solution, and therefore any precisely critical evo-
lution, apparently contains a naked singularity. However,
the precisely critical evolutions are likely to be a set of
measure zero as there is extreme sensitivity to the initial
conditions near ri, . Furthermore, the dependence of the
lapse along g=~ (t =0) is a-r' 'l"-r ', indicating
the singularity to be shrouded in infinite redshift.
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