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Fluctuation Driven Ratchets: Molecular Motors

14 MARCH 1994

R. Dean Astumian and Martin Bier
Departments of Surgery and of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637

(Received 8 November 1993)

The motion of a heavily damped Brownian particle in a periodic potential subject to a dichotomously
fluctuating perturbation is considered. We show that even if the net force is always zero, flow is induced

by a fluctuation of the energy barrier, but only at flipping times roughly in between the adiabatic adjust-
ment times on the left and right of the barrier. Predictions of our model are consistent with recent ex-
perimental data obtained by Svoboda et al. [Nature (London) 365, 721-727 (1993)] for a single

kinesin molecule moving along a biopolymer.

PACS numbers: 82.20.Mj, 05.40.+j, 87.15.—v, 87.22.—q

Chemical reactions occur via individual molecular
transitions. If the system in which the reaction occurs is

large, the efl'ect of this discreteness may be unnoticeable
on a macroscopic scale. Nevertheless, local fluctuations
always accompany any chemical reaction and are even

present at equilibrium. Below we show that nonequilibri-
um fluctuations brought about by an energy releasing
process can be "absorbed" and used to do chemical or
mechanical work by an energy requiring process.

The effects of Auctuations on chemical reactions, in-

cluding enzyme catalysis, have been studied extensively
[1-3] in the context of chemical kinetics. In these studies
it was shown that zero-average oscillation or fluctuation
of the chemical force causes net flux so long as the period
of the oscillation, or, equivalently, the correlation time of
the fluctuation, is not much shorter than the relaxation
time of the reaction. It was also shown that fluctuation of
the kinetic barriers of chemical reactions (with the
affinity kept zero) can also induce flux [2-4], but at high

frequency.
Electric and chemical rectifiers are analogous to Feyn-

man's purely mechanical "ratchet and pawl" engine [5].
Using a potential inspired by Feynman's ratchet, Mag-
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nasco [6] recently showed that Auctuations of the force
around a zero average can be rectified provided the fluc-

tuations are slow enough (i.e., non-"white"-noise). In the
model described by Feynman the pawl moves along a real

physical surface consisting of the asymmetric teeth of the

ratchet. In such a circumstance it is easy to imagine ap-
plication of a Auctuating force in either the forward or
backward direction. It is much more difficult to imagine
a scenario in which the height of the ratchet's teeth Auc-

tuates in time. But such is precisely the mechanical ana-

log of the motion of a Brownian particle on a linear high-

way with a periodic array of fixed charges where the

charge distribution is not symmetric within a period. The
binding of a charged ligand, such as ATP (adenosine tri-

phosphate), to the Brownian particle would change the

height of the barriers relative to the wells, but would not

change the relative heights of the wells.
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FIG. 1. The piecewise linear potential (a) and the types of
fluctuations that we study: the fluctuating force (b) and the
fluctuating barrier (c).

In the case above, if the ball is charged the potential sur-

face has barriers and wells, but when ATP binds the ball

becomes neutral and the surface Aat.
In this paper we study thermal difl'usion on a piecewise

linear potential surface where either the force or the bar-
rier height fluctuates between two states. The main point

is that fluctuation of the barrier height can cause net Aow

even though the net macroscopic force is zero at every in-

stant in time. This Aow occurs in a frequency band cen-
tered around the rate of adiabatic adjustment on the side

with the steeper slope.
The setup for the problem is as follows: %e have a

periodic piecewise linear potential as in Fig. l. In order
to get Auctuation induced Aow it is essential that one side

is steeper than the other, i.e., that c& 2. In this Letter
we take a & 2 . In an overdamped environment and after

scaling the viscosity away and putting the energy in units

of kT the motion on a potential like the one in Fig. l is

described by the following Langevin equation:
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U(x, r )+g(r),

where ( represents the Gaussian white-noise term. The
potential undergoes a dichotomous Markovian fluctuation
and we study two cases.

(i) Fluctuating force

U(x, t) = [U(x)+Au(x, i)].
x x

Here the potential at any x fluctuates symmetrically
around U(x) and hu(x, t) can take the values +d,u(x)
and —hu(x) [cf. Fig. 1(c)]. We see that the force F
now fluctuates between Fi+ = —(Ep+hE)/a and Fi
= —(Ep hE)/a o—n the interval (O, a) and between Fq+

=(Ep+hE)//(I —a) and F2 =(Ep hE)/(I ——a) on the
interval (a, I ). Note that we have hu(0) =du(1) =0 and
U(x, t) U(x+ I,t). Ajdari and Prost recently suggested
a method for dielectrophoretic separation with fluctuating
barriers and without a macroscopic driving field [7].

Going from the Langevin to the associated Fokker-
Planck equation [8] for the probability density distribu-
tion we find

P;+(x, t )

P; (x, t)

—
y
—F a, +a,.

~ y

P+(x,r)
P; (x, r)

—
y F, a„+a„„—-

(2)

U(x, r) - U(x)+~F(r) .
Bx Bx

Here the net force AF(i) fluctuates according to Marko-
vian kinetics between +hF and —hF [cf. Fig. 1(b)]. For
F- —t)U/Bx, which represents the local force on the par-
ticle, we find that on (O, a) the force Auctuates between
F~+ = —Ep/a AF a—nd Fi = —Ep/a+elF, and on (a, 1 )
between F2+ =Ep/(1 —a)+AF and F2 =Ep/(1
—AF.

(ii) Fluctuating barrier

and demanding that for every exp(kj' x) the coefficient
be identically zero fixes the ratios A;+/A;, B;+/B;, and

C;+/C; and leads to D;+=8; . The remaining 8 de-

grees of freedom can be fixed by demanding that the
probability density P —(x) and the Aux J —(x) =(F—

d/—dx)P —(x) both be continuous at the points x =0/1
and x =a and by normalizing the total probability on one
period to be 1.

In Fig. 2 the Aux as a function of the Aipping rate y is

shown for both the Auctuating force (top) and the Auc-

tuating barrier (bottom). In both cases there is no Aux as

y ~ (i.e., for non-time-correlated noise). This is be-
cause after a Aip of the potential surface the probability
distribution does not have enough time to adjust to the
new potential; i.e., the adiabatic adjustment time is

longer than the average flipping time I/y, and the system
electively "feels" the average potential. Figure 2 also
shows how in the low frequency limit of the Auctuating
force case there is a Aux. Magnasco treated this case ex-
tensively in a recent issue of this journal [6] and derived
an expression in terms of system parameters for the Aux

by assuming the system to be adiabatic at all times, cal-
culating the flux in each of the two states and averaging.

In that same issue we studied a special case of a prob-
lem originally proposed by Doering and Gadoua [9] and

presented results concerning the mean first passage time
over a ramp with a Auctuating slope [IO]. We found that
the characteristic time for adiabatic adjustment on an in-

terval was of the same order of magnitude as the mean
first passage time over a ramp with zero slope of the
length of that interval. With the viscosity absorbed in the
time and the energy in units of k T the mean square dis-

tance difl'used in time t is given by d =2t. For the data
we used in Fig. 2 the longer slope has a length of almost
I; we see that the inflection point of the sigmoid at the
top of Fig. 2 is indeed around Iny= I, i.e., a flipping time

where i =I represents the system on the interval (Q, a)
and i 2 represents the system on (a, I ). ) is the Aipping
rate of the Auctuation. The quantities P+(x, t) and
P (x, r) are the probabilities at any time r to find the
barrier at the + or —configuration, respectively, and the
particle at position X. From conservation of probability
(t)iP= —8 J, where P=P++P ) it is inferred that a
stationary solution P(x, t) =P(x) implies a constant Aux
J. Stationarity means that the left-hand side of (2)
equals zero. In that case one can solve for P(x) from two
coupled second order linear homogeneous equations. One
of the eigenvalues of system (2) is zero, so the solution is
of the following form:

0.001

0.0008

0.0006

0.0004

0.0002

]ng Barrier

Solving for the sixteen coefficients is a matter of linear
algebra. Substituting (3) in the differential equations (2)

FIG. 2. The flux along the x axis for both systems presented
in Fig. 1: (Tpp) the Auctuating force with a —,1, Ep 10, and
dF 1, and (bottom) the Auctuating barrier with a= „,EQ
=10, and hE =1.
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of order 1.
The explanation for the shape of the curve at the bot-

tom of Fig. 2 is more subtle. There is of course no flux
for any constant potential surface if U(0) U(1). Thus
in the low frequency limit, ~here the flux is the average
of the + and —flux, the net flux is zero. The interval
with nonzero flux occurs because adiabatic adjustment on
the steeper slope is faster by a factor [a/(a —1)] . We
expect flux to occur in the regime ~here the flipping time
is longer than the characteristic time for adiabatic adjust-
ment on the steeper slope and shorter than the charac-
teristic time for adiabatic adjustment on the longer slope.
This means in our case that 2/a ( y(2/(1 —a) is the
interval where there is a nonzero turnover each time the
barrier jumps to the other state. Taking into account
that the flux is this turnover multiplied by y we find for
the interval of nonzero flux the following estimate:

21n
2

& lny & 2ln
2 2

a (1 —a) '

This estimate corresponds well with what is observed on

the bottom of Fig. 2. It is worth noting that this interval
does not depend on Eo or h, E. We furthermore observe
that a maximal flux occurs when y= 2/(1 —a); this is

precisely the time it takes to difl'use a distance 1
—a over

a flat ramp and, according to a conjecture we made in our
previous paper [10], the time for adiabatic adjustment on

the steeper slope. Interestingly, the sign of the flux in-

duced by a fluctuating barrier is opposite that induced by
a fluctuating force. Recently Doering, Horsthemke, and
Riordan [11] have shown that depending on the statistics
of a fluctuating force, the first correction in an expansion
away from the white-noise limit can have either sign.

The following clarifies how flux can occur when a& 2 .
Consider the system depicted under (I ) and let the for-
ward and backward rate constant both be equal to y. We
let E be sufficiently large, such that the probability distri-
bution when the barriers are up can be reasonably as-
sumed to consist of delta functions at —1, 0, 1, 2, etc. If
the barrier moves to the down configuration at r =0, then

each of the spikes will start to diffuse. The spike at t =0
diffuses according to

P(O~x;r) = e
2 zt

(4)

This function describes a function like the one on the bot-
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After 1/y units of time the probability to be to the right
of a is f, P(O~X;1/y)dx and the probability to be to the
left of —(1 —a) is f:t' ' P(0(x;1/y)dx. When the
barrier goes up again the difference of these two integrals
is the amount of probability that will be caught in the
well as x = —1. Substituting the expression (4) for
P(0~x; I/y) one finds for the flux

r

J(y) =—y& erfc —Jy —erfc 4 y
1 a 1

—a
4 2 2

tom of Fig. 2 and the agreement between this function
and an exact solution as in (3) gets better for higher
values of E in (1). A similar mechanism was discussed

by Ajdari and Prost [7].
We have a mechanism here to transduce chemical en-

ergy into mechanical energy and a simple model for mo-

tor proteins. An interesting feature of our model is that it

stops transducing energy at zero temperature, whereas
with a ratchet of the type discussed by Magnasco flux can
still occur at zero temperature for large enough fluctua-
tion amplitude. It is also worth noting that the potential
in our model is truly periodic everywhere and at aH times.

In the case of the motion of a motor protein along a
biopolymer, one way a fluctuation is brought about is by
the repeated binding of ATP and release of ADP. To see
whether the mechanism we have proposed can generate
biologically significant flux we have to undo the scaling
(the coefficient of friction p is absorbed in the time,
kT=1, and the period L of the potential is the unit of
distance) of our units. With J„being the result of our
simulation and using Einstein's formula, D=kT/p, f«
the relation between the coefficient of friction and the
diff'usion coefficient, we have for the flux J=J„(D/L).
If d is the length of the part of the period with the steeper
slope, then we have for the flipping time t,.„at which a
maximum flux occurs t~,„=d /2.D. Interestingly, with

this simple model we can within an order of magnitude
account for experimental data recently obtained by Svo-
boda et al. [12]. These authors followed a single kinesin

molecule moving along microtubule. They reported the
stepwise motion that our model predicts and a step length

corresponding to the electron microscopically observed

period along the microtubule of L =8 nm. Varying the
ATP concentration they found maximal average speed of
300-500 nm/s and, in that case, measured a force of 5

pN necessary to stop the motion of the kinesin. Going
back to (dimensionless) Eq. (2) and substituting realistic
values for a fluctuating barrier of EO=AE =4 (which

corresponds to a fluctuation between a flat potential and

barriers of SkT) and a —,', we obtain for the maximal

flux J„=1.This flux can be stopped with a constant
force of about 2 (a factor g= 2 more than it would take
to stop a flux of 1 on a flat ramp because most of the
motion takes place during the half of the time when the

barrier is down). Going back now to the experiment of
Svoboda ei al and taking the r. atio of stopping force and

average speed and multiplying it with our guess of
I/(= r' (which means that we assume that the barriers

are up half the time) we find an estimate for the friction
coeflicient between kinesin and microtubule of p = 6
X 10 6 Ns/m. Putting this value and L=8 nm in our

model and realizing that a= 8 implies d=1 nm, we ar-

rive at t,.„=7X10 s for the flipping time at maximal

flux. Assuming that the turnover of one ATP brings

about two flips [i.e. , one forward and one backward tran-

sition in (1)], we find that about 700 ATPs per second
are consumed when one kinesin moves at maximal speed,
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n=—

U, (x)+f(x,n)+X+g(t),

U2(n) +g(x, tt ) +N+ g*(1) .
n

In the above equations, U~(x) and U2(n) are the periodic
potentials on which x and n move, and X and N represent
the driving forces for the system x and noise n evolution,

considerably more than one ATP per step. J„.~= 1,
P=6x 10 6 Ns/m, and L-8 nm furthermore leads to
J= 100 nm/s, only a factor of 4 smaller than the speed
that Svoboda et al. [12] measured. Refinements are pos-
sible that make our model of barrier fluctuation driven

motion along a biopolymer more biologically realistic.
For instance, letting forward and backward transition
rates in (I) be different allows for g& 2 . It is then possi-

ble for the model at the observed ratio of stopping force
and average speed and L 8 nm to generate the observed
Aux of 400 nm/s with an ATP turnover of only 200 s

We have shown that zero-average random Auctuations
of a barrier height or a net force can cause a particle on a
nonsymmetric periodic potential to move uphill against a
constant applied force. This means that the system is

able to absorb energy from the source of the fluctuations
and use it to do work. But we know that energy cannot
be absorbed from equilibrium fluctuations, and therefore
it becomes important to question what the critical distinc-
tions between equilibrium and nonequilibrium (energy
driven) fluctuations are. One difference, emphasized by
Magnasco [6], is the time correlation of the fluctuation—we usually model equilibrium Auctuations as white

noise, noise with a correlation time that approaches zero.
In our model very high frequency fluctuations, which also
have a correlation time approaching zero, do not induce
net Aux. Can this be the only difference'? If so, we are
led to the conclusion expressed by Magnasco —that a
nonsymmetric system can extract energy from the time-
correlated noise in a bath without "paying" for it. Yet,
there is one additional assumption that is implicit in both
the Langevin noisy force, and in the dichotomous noise
used by Magnasco, and by us among many others. That
is that the Auctuations do not depend on the state of the
system. For every force, there is an equal and opposite
reaction force, so, when is it appropriate to ignore the
effect of the system on the source of the noise? Consider
a broader model for a noise influenced process in terms of
two coupled stochastic differential equations, one for the
evolution of the system variable, and one for the evolution
of the noise process:

respectively. We have separated these so that fa'tIU~
=fo 8U2 0, where L~ and L2 are the periods of U~(x)
and U2(n), respectively. The coupling between the sys-
tem x and noise n is through the functions f and g. If
't)f/Bn —t)g/t]x the vector field (f,g) is curl free and
describes motion in a potential. If X and N are both zero,
detailed balance holds and there is no Aux along x. The
noise process still produces fluctuation, but the feedback
between x and n is reciprocal and no power transfer
occurs. This has been called endogenous noise [3]. If N
is not zero, the fluctuations are driven by a nonequilibri-
um force, and, depending on the symmetry of the poten-
tial U~ the interaction f(n, x) may cause Aux along the
coordinate x. If N is very large, g(n, x) can be neglected
in the second equation to very good approximation, yield-
ing eAectively state independent noise (or autonomous
noise [3]). Dichotomous noise arises if f(n, x) can take
on only two values, depending on n. In the case shown
under (I), N represents the AG of hydrolysis of ATP.
Only if the barrier fluctuation is negligible compared to
this hG can we consider the noise autonomous.
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