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Hall Effect and Resistivity of High-T, Oxides in the Bipolaron Model
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We discuss the Hall effect and resistivity above T„using a variant of the bipolaron theory
which takes into account Anderson localization of the bosons by disorder. The model supposes that
RH = 1/2enbc, where nb is the number of delocalized carriers. Temperature and doping dependences
of p, RH, cot GH, and the "spin" gap in YBa2Cu307 q are explained.

PACS numbers: 74.20.Mn, 74.25.~

The purpose of this paper is to apply the bipolaron
model of high T„with consideration of the localization
of the carriers by disorder, to the Hall efFect and resis-
tivity of Y-Ba-Cu-0 (YBCO). It is recognized that other
theories which are basically difFerent have successfully ex-
plained many features of the Hall "constant" and resis-

tivity; our preference for the bipolaron model and some
criticism of others is contained in our recent papers [1—3].
Mott has shown some time ago [4] that a T-dependent
Hall coefFicient can be explained if the carriers are spin
bipolarons . More recently he suggested [1] that, since in-

elastic neutron scattering does not reveal any moments,
the spin polarons must transform into highly correlated
metal disks. If so, we do not think the predicted Hall
behavior should occur. In general both lattice vibra-
tions and spin fiuctuations give rise to polarons and bipo-
larons, which can be small or large, depending on the
bandwidth and the strength of the interaction. It is im-

portant for application to high-T, superconductivity that
the bipolaron bounds more easily in two dimensions than
in 3D, and that the mean value of the pair radius is a few

angstroms [5—7]. Thus the ground state of high-T, oxides
can be seen as a charged Bose liquid of 2e spin-lattice
bipolarons [2]. Our assumption is then that above T,
a material such as YBCO contains a nondegenerate gas
of singlet bipolarons. We have suggested elsewhere that
above 200 K there are also triplets with a slightly lower

mass due to the lower binding energy. The main new

point is to assume that a proportion of bipolarons are in

Anderson localized states, and as pointed out by one of
us [1] Coulomb repulsion limits the number of bosons in
each localized state, so that the distribution function will

show a mobility edge E, Because of lo. w dimensionality
of high T, co-pper oxides (2D rather then 3D) any ran-

dom potential leeds to localization no matter how weak
it is. Moreover one-particle density of extended states
above E, is constant for practically all energies within
the bipolaronic band of the width 2m:

+c + 6( +c+2tD

The main part of the electron-electron (Hubbard U)
and electron-phonon correlation energy is included in

the binding energy of bipolarons and in their bandwidth
renormalization. The rest, including the boson-boson re-

pulsion, may be treated for extended states as perturba-
tion resulting in the canonical Boltzmann kinetics or in

the Bogoliubov excitations in the superconducting state.
In the normal state the corrections due to the interac-
tion to the single-particle spectrum are small if the gas
parameter (for a short-range repulsion) or the random

phase approximation parameter r, for Coulomb forces is
not very large. In that case the density of extended (free)
bosons is given by

(1 —ye
—z~/+ '1

nb(T) = ln
~

2to t, 1 —y

where y = exp[(p+ E,)/T], p ( E, is the chemical

potential, and ks is taken to be unity. To calculate the
density of localized bosons nL, (T) one should take into
account the repulsion between them. One cannot ignore
the fact that the localization length ( generally varies
with energy and diverges at the mobility edge. In the
case of charged bosons their number in a single poten-
tial well is determined by the competition between their
long-range Coulomb repulsion 4e2/( and the binding

energy E, —e. If the localization length diverges with
the critical exponent v ( 1 [8], ( (E, —e) ", one
can apply a "single-well —single-particle" approximation
assuming that one can place only one boson in each po-
tential well. The gross features of the temperature be-
havior of nL, (T) are not influenced by this approxima-
tion if the number of bosons in a potential well is finite

[8]. Within this approximation localized charged bosons

obey the Fermi-Dirae statistics:

Nr, (e)de

~ exp('&") + 1

where the density of localized states Nr, (e) may be ap-

proximated in many cases by the exponential tail:

(4)

with p of the order of a binding energy in a single ran-
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If T « (p, 2io), the solution ofthisequation is y 1 with
an exception of a very narrow region of "compensation"
n —ni, « T/2io, where y is approximately 0.6 for p = 2ip
The density ng depends on y logarithmically, therefore its
temperature dependence remains practically linear up to

ay~

ng(T) = n —nl, + nL, bT, (6)

with b = p i ln( +") and thus temperature indepen-
dent. Solving the Boltzmann equation with a weak mag-
netic field H for extended bosons, scattered by acousti-
cal phonons and by unscreened random potential in the
relaxation time approximation [9], or using a variational
approach for the inelastic boson-boson scattering one ob-
tains the canonical expressions for the Hall ratio RH, re-
sistivity, p and cot 8~'.

dom potential well and nl, the total number of localized

states per unit cell. The integral in Eq. (3) is equal to
the total number of occupied localized states and varies

linearly with temperature over a wide range T & (p, 2iv)
because the chemical potential is pinned in this temper-
ature region near the mobility edge E„which one can
choose as an energy origin, p, E, = 0. The pinning of

p follows from conservation of the total number of bosons

per cell, n = nb(T) +nl, (T), which gives for the chemical

potential

with a as a constant determined in Ref. [10]. Unoccupied
potential wells with the density bnr, T also contribute to
the scattering, giving rise to the energy independent elas-
tic relaxation rate, which is linear in temperature:

= mC, ~nI, T (12)

with C; as a constant. Substitution of Eqs. (10)—(12)
into Eqs. (7)—(9) yields

Vp
RH )

2e(n —nl, + bnl, T)

an extended boson by localized bosons gives a contribu-

tion because momentum is not conserved in two-particle

collisions in the presence of the impurity potential. In
a "single-well —single-particle approximation" the role of
the Pauli exclusion principle is played by the dynamical

repulsion between bosons. That is why the boson-boson
"transport relaxation rate" has the same temperature de-

pendence as the fermion-fermion scattering and identical

to that calculated by Xing and Liu in the case of lo-

calized fermions [10]. This transport relaxation rate is

proportional to T2 because only localized bosons within

the energy shell of the order of T near the mobility edge
contribute to the scattering and because the number of
the final states is proportional to temperature:

aezbnr,

m

vp(r~)

2eng(T) (~)" (7) p = (m Cvp/4e )
T + 0'yT

n —nl, + ni, T (14)

Vpm

4e2ng(T) (~)
'

(T)cot 8& (9)

where C = C«+ nI.C; and a'q = ne bnl, /m C is the
relative boson-boson scattering cross section, and

cm2C
cot8H = (T+obT ) .

2eH

where m = n.hz/ioa2 is the in-plane boson mass, a is the
in-plane lattice constant, w, = 2eH/mc, r is the trans-
port relaxation time, vp is the volume of an elementary
cell (0.167 nm for YBazCusOq g), and ( ) stands for
an average with the energy times the energy derivative
of the Bose-Einstein distribution function. The trans-
port relaxation rate due to 2D boson-phonon scattering
has been shown to be energy independent and linear in
temperature [9]:

A—ac
= mC, T,

where the constant C, is proportional to a deforma-
tion potential; In the case of Bose-Einstein statistics and
T « 2iv an umklapp scattering can be neglected so the
scattering between extended bosons does not contribute
to the resistivity. However, the inelastic scattering of

These formulas contain rich information about the num-
ber of bosons, localized states, and the relative strength
of difFerent scattering channels. The spin-fiuctuation con-
tribution to the relaxation rate is shown to be linear in
temperature [1], so it can change only the value of the
constant C. There are two fitting parameters, n and
nl„ if no significant variation of m C, b, oq is expected
with doping. Because of the chains the number of in-

plane carriers is not fixed by the chemical formula at
least in "1:2:3"YBCO. On the experimental side we have
in-plane kinetic data for YBa2Cu307 b in a wide range
of doping and temperatures [11,12]. The theoretical fit
with parameters n —nl„bnL„m C, and o~ is shown in
Figs. 1—3. These parameters are presented in Table I.
One can see from Table I that the number of localized
states increases with doping (if the width p remains con-
stant). The number of extended bosons also increases.
The scattering cross sections and their relative contribu-
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FIG. 1. Hall coeKcient (in units of 10 C m ) for
YBa2Cu30r q [11]compared with the theory [Eq. (13), solid
lines] for different (I: 0.05 (6), 0.19 (I), 0.23 (o), and 0.39 (o).
Parameters of the model are presented in Table I.

tion slightly depend on the doping. Underdoped sam-

ples (b ) 0.2) are practically "compensated" in the sense
that the total number of bosons is very close to the num-

ber of localized states. This should be the case if every
additional oxygen ion produces a single localized state.
From the value of o'(, (see Table I) one can see that boson-
phonon and boson-boson scattering rates are comparable
near T, At high. er temperatures the latter dominates.
The residual resistivity is zem in our modeL

It should be mentioned that the dissociation of a bo-
son on two single nondegenerate polarons at a sufBciently
high temperature has no influence on the temperature de-

pendence of RH and p if the efFective mass of a boson is
close to the efFective mass of two single polarons. Any
nondegenerate carriers on a two-dimensional lattice have

the same temperature and doping dependences of their
kinetic properties, Eqs. (13)—(15). This is also the case
for triplet bipolarons. However, if triplets are lighter then
singlets the slope of resistivity (proportional to m2C) di-

minishes with temperature because singlets are thermally
excited into triplets. The characteristic small deviation
from linearity (see Fig. 2) should appear at temperature
T' where a "spin" gap in NMR and in neutron scat-
tering [13,14] appears. Earlier we have explained with

triplet bipolarons the temperature dependent Korringa
ratio [9] and the change in slope of resistivity at T = T'
[15],which have been measured in YBazCu40s by Machi
et aL [16] and by Bucher et aL [17] correspondingly. Re-
cently Ito et aL [12] have observed a correlation in the
slope of resistivity with the temperature dependent Kor-
ringa ratio in YBaaCusOr s. The temperature depen-
dence of the normal state near-infrared absorption in

YBasCu307 —$ also reflects the spin gap [18]. All these
observations support our explanation [9,15] of the spin

gap as a singlet-triplet bipolaron exchange energy. There
is a direct connection of the proposed normal state ki-

FIG. 2. Resistivity for YBa&Cu30& z [ll] compared with

the theory, Eq. (14). For parameters see Table I.

netics with high T,-phenomena. If T, is a temperature of
the Bose-Einstein condensation of charged bosons then a
simple estimation with 3D corrections to N(e) taken into
account [9] yields

2to(n —ng)
C (16)

24~
n —nr. && (17)

in the opposite limit n —nr, & 2tg/to If one. takes a res-

onable value of the in-plane bipolaronic half-bandwidth

to =450 K (for estimations see Ref. [19]) in Eq. (16) or
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FIG. 3. cot eH [ll] compared with the theory, Eq. (15).

with I the logarithm of the ratio of out-of-plane to in-

plane mass, and

T, kg
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2.22
1.61
1.25
1.11
0.85

0.103
0.041
0.035
0.023
0.007

0.05
0.19
0.23
0.28
0.39

TABLE I. Microscopic parameters of the model determined from the experimental data [11].

b n —nr, bng(10 K ) m C {10 ~K) cry(10 K )
0.81 1.0
0.69 1.1
0.62 1.2
0.46 1.6
0.46 1.6

the value of the out-of-plane half-bandwidth 2t~ 45 K
in Eq. (18) one can explain the high value of T, 90
K. The basic phenomenon that allows the high T, is
that the polaronic narrowing of the band, which elimi-
nates the small exponential factor in the BCS or McMil-
lan's formula, as has been already discussed by one of us
[20]. On the other side the well-known shortcomings of
the Schafroth model like a huge value of T, 10000 K
[21] are not shared by bipolaronic model of superconduc-
tivity. Their enhanced efFective mass ) 10m, and the
low enough concentration n 10z~ cm s push T, in the
range of 100 K. These and other "Bose-liquid" features
lead us to a firm conclusion that a charged Bose liquid is
a simple but far-reaching model of low-frequency kinet-
ics and thermodynamics of of high-T, superconductors
[1—3] in both the normal and the superconducting states
[22]. In this Letter we have shown that this model gives
a quantitative explanation of the longitudinal o and
transverse o» conductivities of copper based high-T, ox-
ides if one takes into account the Anderson localization.
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