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Transition to Parametric Wave Patterns in a Vertically Oscillated Granular Layer
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Experiments on vertically oscillated granular layers reveal, at a critical acceleration, a well-defined
transition from a Oat surface to standing wave patterns oscillating at half the excitation frequency. The
patterns observed in a cylindrical container are squares or stripes; a continuous transition between these
states occurs when the vibration frequency is varied at constant acceleration. The dispersion relation for
these parametric granular waves is similar to that for gravity waves in a Auid, but exhibits a well-defined
cutoff associated with the particle size.

PACS numbers: 83.70.Fn, 46.10.+z, 47.20.-k, 47.54.+r

Propagating wave fronts, solitons, and extended spatial
patterns are examples of the collective behavior often ob-
served in systems driven far from equilibrium [1]. In
continuous systems the spatial coupling, which is a mac-
roscopic manifestation of molecular interactions, is re-
sponsible for the collective motion. Collective behavior
has been observed recently in granular materials [2-6],
but in contrast to continuous systems, the spatial coupling
arising from the interactions between the grains is not
well understood. Difficulties arise because granular ma-
terials comprise a unique state of matter with properties
common to both fluids and solids [7]. These shared prop-
erties make the application of statistical methods to the
definition of mean quantities difficult, and cause phenom-
enological coefficients, such as viscosity or elasticity, to
be strongly singular [7]. Despite these formidable chal-
lenges, the significant role of granular dynamics in indus-

try and geology makes the understanding of these materi-
als an important subject for science and technology.

our experiment examines collective phenomena in thin

layers of glass particles oscillated vertically. Despite the
similarity of the observed patterns to parametrically ex-
cited surface wave patterns in fluid layers [81, the granu-
lar system is quite diff'erent: The waves we observe do
not represent a parametric excitation of known intrinsic
collective modes of the granular layer; the waves exist
only in the presence of sustained external forcing [91.
This behavior stands in sharp contrast to that of fluid sys-
tems where the intrinsic modes (gravity waves) persist for
1ong times. However, we find that the dispersion relation
for waves in granular layers is similar to that for gravity
waves in a fluid, including a well-defined minimum wave-

length like that associated with dissipation in a fluid [10].
These observations suggest that the collective mode we

observe is a normal mode strongly damped by internal
granular friction. The spatial coupling appears as a re-
sult of a lateral momentum transfer associated with mul-

tiple collisions among the grains.
Our experiments are conducted in a cylindrical Plexig-

las cell (76 mm in diameter, 40 mm in height) filled with

glass particles to a depth of 3-100 particle diameters.
The particles have diameters of 0.2, 0.3, or 0.4 mm. The

cell is mounted with its principal axis parallel to gravity
on a Ling-Electronic vibration exciter driven by a fre-

quency synthesizer (10-100 Hz). The amplitude of the
sinusoidal acceleration, one of the bifurcation parameters,
is measured with a %ilcoxon Research 111 acce1erometer
and a 88t, K 2635 charge amplifier. A stroboscope, syn-

chronized at half the driving frequency, removes the hor-

izontal motion associated with the parametric waves and

allows the dynamics of the pattern to be followed. We
use as parameters the dimensionless layer thickness,
JV =H/D (where H is the layer thickness and D the par-
ticle diameter), and the dimensionless acceleration ampli-

tude I =4tr f A/g (where f is the driving frequency, A

is the driving amplitude of the cell, and g is the accelera-
tion of gravity).

Six photographs of patterns observed above the insta-

bility threshold at I, are shown in Fig. 1. For small f
and increasing I, the flat surface bifurcates to a square
pattern consisting of two standing waves with perpendicu-
lar wave vectors oscillating at half the driving frequency
[Fig. 1(a)]. For f larger than a critical value f„the pat-
tern takes the form of stripes consisting of a single para-
metric standing wave [Fig. 1(b)1. The stripes appear to
be constrained to be perpendicular to the wall of the con-

tainer, which can lead to strong curvature near the wall.

These patterns have many of the features observed in oth-

er systems such as Raleigh-8enard convection in a cylin-

drical container [11]. For example, new stripes nucleate
in regions of high curvature and defects are generated in

the center of the cell where the wavelength is smaller

[Figs. 1(c) and 1(d)].
The instability threshold, determined by increasing I

with H and f fixed, is shown as a function of I and f in

Fig. 2. The transitions are subcritical and the associated
hysteresis is typically 5%., the hysteresis increases with

decreasing f or N
No model exists that can adequately describe a granu-

lar system [7]. However, a possible explanation for the

instability mechanism is provided by the following simple

argument. For acceleration amplitude larger than g, at
the point of the cycle where the effective gravity becomes
negative, the layer loses contact with the base of the con-
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FIG. 2. Stability diagram sho~ing the transition from a flat
layer to squares or stripes (solid lines) as a function of the di-
mensionless acceleration I and driving frequency f, for layer
depths of 1.75 mm (0) and 4.3 mm (k) (for particles of diame-
ter 0.2 mm). The dashed lines separate regions of squares and
stripes, and I,'~ is the instability onset for a single particle (see
text).

FIG. 1. Patterns observed close to the instability threshold:
(a) square pattern (f 23.2 Hz, I 3.5); (b)-(d) striped pat-
terns with some dislocations (f 27.6 Hz, I 4.23); (e),(f)
disordered patterns near the squares-to-stripes transition (f

25. 1 Hz, I 4.3) (depth of layer, 1.75 mm; particle diameter,
0.2 mm).

tainer, creating a slma11 gap at the bottom of the layer.
The momentum transfer due to the subsequent collision
of the layer with the cell bottom is observed both in the
signal of a transducer in contact with the base of the con-
tainer and in the cell accelerometer signal. These signals
are used to determine the collision duration bt and the
flight time hr [5]. When I is slightly larger than 1, hr
«1/f (the excitation period), but when I is increased to
a critical value I ~I „htbecomes equal to 1/f. Then,
for bt «ht, which occurs when f is small, the collision of
the layer takes place when the acceleration of the plate is
close to —g, i.e., close to the takeoff point. Because the
collision is not instantaneous, the particles colliding first
acquire the velocity of the plate and then lose contact
with it before the collision is completely finished. The in-
teraction of the subsequent rising and falling momentum
Auxes provides a possible mechanism for the instability.

The picture described above is supported by experi-
ments performed at low frequency and small layer thick-
ness [12]. An estimate of I, can be obtained by consider-
ing the one-dimensional motion of a single particle collid-
ing inelastically with an oscillating surface. A straight-
forward calculation gives I =I" i'=(~ + I)'~ 3.30, in

good accord with the average observed value at small fof

3.35 (see Fig. 2). Moreover, the collision observed in the
accelerometer signal occurs near the point where gravity
vanishes.

If the layer thickness or the frequency is made large,
the collision time of the layer bt becomes large [12].
Then not all the particles collide with the bottom or lose
contact with it simultaneously. %e speculate that the
particles closest to the free surface of the layer take off
first and collide last [13]. At I -I,', only the few parti-
cles nearest to the free surface of the layer can give a
negative momentum contribution at the point of effective
zero gravity. Thus, I has to be increased above I P' in or-
der that more particles can contribute to the negative
momentum flux. The strong increase in the instability
threshold is thus plausibly explained by the spreading in

the collision time of the layer. In addition, because the
spreading is negligible when I g/4rr f bH & I (where bH
is the maximum dilation of the layer) [12], this strong in-

crease should appear at smaller frequencies for thicker
layers, as is observed experimentally (see Fig. 2).

The mean wavelength A, of the pattern close to the on-
set of squares is plotted in Fig. 3(a) as a function of H for
three different particles sizes. The wavelength first in-

creases with H but then saturates at a value that is al-
most independent of D. The location of the saturation
point increases with D, but corresponds to a constant
value of N(=7). Note that the waves disappear when

the layer is only a few particle diameters thick (N = 3).
Figure 3(b) shows the dependence of A, on f near the on-

set of instability for N=7 and three different particle
sizes. For the three values of D studied, the data indicate
that 1i, ee I /f and that )i, exhibits a well-defined minimum
1i,~;„,when f goes to infinity [see Fig. 3(b)]. The slopes of
the straight lines in Fig. 3(b), g,ii, are insensitive to
changes in N for N & 7. However, in the region where A,

is a function of H, the slopes are a slowly increasing func-
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FIG. 3. Wavelength dependence on (a) layer depth (with

f 18.3 Hz) and (b) excitation frequency (with JV =7), for par-
ticles with diameters 0.2 mm (A), 0.3 mm (0), and 0.4 mm (a)
(with I =3.5). The intercepts yield the minimum wavelength,
~min

tion of N [see Fig. 3(a)]. The largest changes in g,ff were
obtained for particles with diameters equal to 0.4 mm
and were on the order of 20%%uo when N was increased from
3 to 7. These changes in N caused no appreciable
changes in A,~;„,indicating that it is only a function of D,
A, ;„=X~;„(D).For N ~ 7, the observations are summa-
rized by the dispersion relation

)j. —X;„(D)=g,ff/f

where Xm;„(D)= 11D and g, ff = 310 cm/s2.
The observation that g,g-g is consistent with a gravi-

tational restoring force giving rise to parametric waves in

the granular layer. Moreover, Eq. (1) is similar to the
dispersion relation for surface gravity waves [14]. The
wavelength must be related to both the lateral velocity of
the grains, V~, and the time available for the lateral
motion of grains, t~. Note that a lateral transfer of mass
is necessary within each period of the excitation in order
to sustain a stationary wave. Moreover, associated with
each mass transfer is a lateral momentum transfer that is
due to the lateral gradient of the vertical momentum of
the particles [15]. This eA'ect is analogous to the pressure
gradient giving rise to lateral motion of fluid in gravity
waves. Because the lateral motion of grains occurs when
the layer collides with the bottom of the container, V]
must be a fraction of the collision velocity, V„and t[
must be on the order of the ratio a/V„where a is the
amplitude of the pattern. Thus, X must be proportional
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to a. This proportionality is supported by the experi-
ments, with a proportionality constant equal to 0.6. In

addition, measurements of the mean wavelength of the
square pattern, performed with D, H, and f fixed, show

that A. increases linearly with a. Thus, at constant 1, X

must be proportional 1/f and the proportionality con-
stant must be on the order of g, as is observed experimen-
tally.

Recent experiments on the parametric instability of a
liquid-vapor interface close to the instability onset found
that the wavelength of the patterns exhibited a cutoff as-
sociated with dissipation [10]. By analogy, the present
observations of a minimum wavelength suggest that the
waves we observe are strongly damped by internal fric-
tion; at );„they are too strongly damped to be parame-
trically amplified. Thus, since km;„depends on D [cf. Fig.
3(b)], our interpretation suggests that the dissipation de-
pends on particle size.

At small frequencies, A, is about one-fourth of the di-
ameter of our cell, so that one might be concerned about
errors introduced by the quantization of the wavelength.
However, a few experiments conducted in a square con-
tainer have shown that the shape and size of the cell do
not aAect the wavelength selection of the pattern.

A continuous transition between squares and stripes is

observed by slowly varying f while keeping 1 constant.
When f is decreased, a lateral instability of the stripes
grows in amplitude, giving rise to the square pattern [see
Figs. 1(e) and 1(f)]. This transition is indicated by the
dashed lines in Fig. 2. The intersection of the dashed and
solid lines defines a characteristic critical frequency for
this transition, which is a linear function of H. We re-
mark that the squares-to-stripes transition is not concom-
itant with the strong increase in the instability threshold
observed in the striped pattern region (see Fig. 2). The
pattern exhibits intermittent defect nucleation even close
to the threshold at I,. When the excitation is increased
further, the defect nucleation becomes more frequent and
the wave pattern displays a transition to spatiotemporal
chaos, as is often observed in pattern forming systems.

In conclusion, our study of parametrically excited
granular waves reveals that the wavelength of the pattern
is, for thick layers, independent of the layer depth, but
varies linearly with 1/f, just as for gravity waves in a
fluid. However, the granular waves exist only in the pres-
ence of strong sustained external forcing, which suggests
that they are heavily damped by internal friction. Mea-
surements of the instability threshold for the flat layer
suggest that the wave formation is related to the interac-
tion between two particle fluxes with opposite momenta;
an upward flux forms when the falling dilated layer col-
lides with the base of the oscillating container.

Future experiments conducted with particles of difkr-
ent coeScients of restitution and under difkrent pressure
conditions should help clarify the roles of particle elastici-
ty and interstitial gas viscosity in the spatial coupling of
the layer.
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