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From Feynman's Wave Function to the Effective Theory of Vortex Dynamics
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We calculate the overlap between two many-body wave functions for a superfluid film containing a
vortex at shifted positions. Comparing the results to phenomenological theories, which treat vortices as
point particles, we find that the results are consistent if the point-particle vortices are considered as un-

der the action of the Magnus force and in weak interaction with sound waves of the superfluid. We are
then able to resolve the disagreement concerning the eA'ective mass of vortices, showing it is finite.
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Vortices play an important role in the understanding of
both static and dynamical properties of a superfiuid [1].
They determine the Kosteriitz-Thouless phase transition

[2], and provide a mechanism for the mutual friction be-
tween the superAuid and the normal Auid [3]. As a result
of advances in experimental techniques, there are many
studies of problems related to vortex dynamics, such as
the quantum nucleation of vortex rings induced by mov-

ing ions [4] and quantum phase slippage near a sub-

micron orifice [5]. In two dimensions, the theoretical
framework for understanding these dynamical phenome-

na is based on an effective point-particle formulation of
vortex dynamics, and has been very successful [1]. Natu-

rally, physical quantities in the phenomenological theory,
such as the vortex mass, the Magnus force, and the fric-
tion should be derived from a microscopic theory. How-

ever, the current understanding of these quantities is in a

confused state: There is no clear calculation of the cou-

pling of the vortex to the low lying excitations responsible
for the friction, and the theoretical estimates of the vor-

tex mass range from zero [6], to finite [7], to infinite [8].
There is also a suspicion that an effective mass may not

be meaningfully defined for a vortex after all [9].
The purpose of the present paper is to present a con-

ceptually straightforward calculation to give clear con-

straints on these quantities. We invoke a microscopic
description of the vortex by writing a Feynman many-

body wave function for a superfiuid film containing a vor-

tex [10]. We calculate the overlap integral between such

a state and that with the vortex shifted a distance away,
and find how it behaves as a function of the distance. We
also calculate the same quantity within the phenomeno-

logical point-vortex theory. Comparing the two, we con-
clude that the eA'ective mass of the vortex cannot be
infinite, and that the coupling of a vortex with low lying
excitations must be sufficiently weak. At the end of the

paper, we will discuss the generality of our approach and

its application to other systems.
Let us start with the phenomenological theory of vortex

dynamics in a two dimensional superfluid film. A vortex

is regarded as a point particle moving under the influence

of the Magnus force hpoix v, where h is the Planck con-
stant, po is the 2D superAuid number density, z is the unit

vector normal to the film, and v is the velocity of the vor-
tex. Its effective Hamiltonian may be written as

where m, , is an eAective inertial mass of the vortex, the
vector potential A in the symmetric gauge for the
Magnus force is ( —y, x)hpo/2, r is the vortex coordinate,
and q =+'1 is the vorticity of the vortex. Equation (1)
can be understood by drawing an analogy with the case of
a two dimensional electron moving in a magnetic field,
with q interpreted as the vortex "charge" [11].

This simple phenomenology is unfortunately not ade-

quate if one wishes to compare with a more microscopic
theory. One must also include interactions with low lying
excitations such as various sound waves of the superfluid,
which may be realized by the following model:

H; =q QM(k)e'"'(ai, +a 1, ),
k

where k is the wave vector of a low lying excitation with

the corresponding creation (annihilation) operator ai,
(ak). An index labeling diA'erent kinds of excitations is

omitted for notational simplicity. Coupling of this form
conserves the total momentum of the system, as is neces-

sary for a translationally invariant system. The Hamil-

tonian for the low lying excitations is H, =z gAcoka~ag.
Therefore the total Harniltonian of the system, a vortex
and the low lying excitations, is H=H, , +H;+H, . We
will focus our attention on the overlap integral between

diflerent vortex states, in which the vortex mass m„,the

Magnus force, and the coupling between the vortex and

the low lying excitations should be involved.

In the absence of the coupling to the low lying excita-
tions, the overlap integral between two coherent states
centered at ro and ro can be calculated as [11]

0(ro, d) =(ro~ro) =exp — + z. (dxro)4l' 2I'
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where i = (2xpp) 'i is the mean spacing between the
atoms in the superfiuid, and d=rp —rp. The coherent
state has the form of (4) below, with I and I' replaced byi, and ly, ) by the vacuum of the low lying excitations.
The above overlap integral contains a phase factor, de-
rived from the Berry phase (or Aharonov-Bohm phase in

this context) of the coherent state. It also contains a
Gaussian decay factor, reflecting the localization of the
coherent state. Both factors are characterized by l~, and
are independent of the vortex mass m,

In the presence of interactions with the low lying exci-
tations, the total overlap integral will change in two ways

by the polaron effect [12]: (a) The vortex can induce po-
larization of the excitations, and the overlap between the
polarized excitations of one coherent state of the vortex
and those of a shifted coherent state can contribute to the
reduction of the total overlap integral. (b) The polarized
excitations tend to localize the vortex, squeezing the
coherent state to a smaller size than I . These eA'ects

will clearly depend on the interaction strength, and will

also involve the vortex mass. Now a coherent state of the
vortex centered at rp may be approximated by the follow-

ing variational wave function:
P

lrp& = 1
exp

42~i'
lr —

rpl ii rp&r+
4i 2I'

(4)

where I and I' are two variational parameters, and ly, ) is

a wave function of the excitations only. With the above
ansatz, the total energy of the system is evaluated as

2

4m I i i 2 im i'

+&~,l(~, +R) ly, &, (s)

where H; =qggM(k)e " ' i e' "(ay+a ~). First, the
energy is minimized by taking l y, ) as the ground state of
H, +H;, namely,

im

i &2

where the spectral function J(rp) is defined as

J(rp) =g lu(k) l
2k '

b(cpp —cp) .h2

M(k)e-'"";~
„

I ye) =exp q g e '(aq —a q) l0), (6)
6 cpk

where l0) is the vacuum of the excitations. The energy of
the system then becomes

4m„l~ l~ i' 2 l~

+ lM(k) l'e ""'
ANp

Obviously i'=i minimizes (7). The energy is further
minimized with respect to I if

i '=i '+-- (8)

Having the variational parameters I and I' determined,
the overlap integral O(rp, d) is then found as

O(rp, d) =(rplrp) =exp — + (iz rpxd)
ldl'
4lj 2I

(10)

for a suIIiciently small distance ldl. Here the decay
length ld in (10) is

+ I' +
'

d
J(rp)

2I' 2l4 "P rp'

The above results have several interesting features.
First, the length in the Berry phase term is not renormal-
ized by the interactions. In fact, the same result is

reached even if we assume a general phase factor in the
ansatz (4). The result has nicely demonstrated the ro-

bustness of the Berry phase against the details. Second,
by (8) the localization length l is smaller than i . The
elfective mass m, , enters in the equation, because it deter-
mines the Landau level spacing, which in turn tells how

hard it is to mix with the higher Landau levels in order to
shrink !. Third, the last term of (11) comes from the
overlap of the polarized excitations. Finally, when we

consider the contribution from the fluctuating vector po-
tential in (1) all these features remain unchanged.

Now we turn to a completely diFerent way of obtaining
the overlap integral, a microscopic calculation based on
Feynman's many-body wave function. We will show that
there is a complete correspondence between the two ap-
proaches. This will enable us to determine the vortex
mass, the Magnus force, and the coupling to the excita-
tions. If yp(r~ r~) is the ground state many-body
wave function of Hell, the system with a vortex may be
described in a first approximation by [10]

l y(rp)) = g exp[ie(r~ —rp)+a(rj —rp)) yp, (12)
j~)

where rp is the vortex center, 8(r) the angle of r, and
a(r) a real function of lrl. The most interesting feature
of the wave function is that it changes phase by 2z when-
ever an atom moves around the vortex center once. In
fact, it is by this feature that a vortex state should be
defined; the above wave function should be regarded as
an approximate description of the lowest energy state
with this feature. The phase factors in (12) introduce a
singularity at the vortex center, and this must be canceled
by requiring exp[a(r)] to vanish at the origin, otherwise
the cost in kinetic energy would be too high. The particle
density in the state, (12), therefore vanishes at rp. At
large distances, the depletion of particle density due to
the vortex vanishes like lr —rpl, and correspondingly a
decays to zero like lr —

rpl
' [13].

The full calculation of the overlap integral from the
many-body wave function is difficult, but we may expand
lnO(rp, d) in powers of d. In the small ldl limit the two
leading terms will only involve one- and two-body density
distributions in the state (12). Concrete results will then
be obtained from a comparison with the same leading
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terms in (10). To facilitate the expansion we write

0(re d) =(y(re)))r(re)) =(exp, g (ig, (r, —red)+gx(r, —re d)),
J

where () denotes average in the state of (12), and g)(r, d) =[0(r+d/2) —8(r —d/2)] and g2(r, d) =a(r —d/2)
+a(r+d/2) —2a(r). Up to second order in d, we may write g) (r, d) =d zx (r —ro)/~r —

ro~ and g2(r, d)= —,
' (d V) a(r). A straightforward cumulant expansion of (13) then yields, to the same order in d, that

d zx (r —ro) p 2 ( 2 1
(' d z x (r —ro)

InO(ro, d) = d rp(r)i
2

+ d rp(r) —,
' (d V) a(r —ro) —— d rp(r)

lr —rol' r —ro

d i &('(r —ro) d i && (r' —ro) I
&

2
d .z x (r —ro)d2rd r'p(r, r') 2, 2

+ — d rp(r)2" " ' )r-ro)' ~r'-ro)' r —ro
(i4)

lnO(ro, d) =irrppz (dxro) —'+O(ds),
4lj

(I S)

where we have put the second order term as independent
of the direction of d because of the isotropy of the system
about the vortex center. The second order coe%cient has
been parametrized by a length ld, which represents the
same decay length as in (10).

We now examine closely the second order terms in

(14), and show that their contribution to Id is finite.
The term containing a(r —ro) converges because the dou-
ble derivative of a decays as (r —ro( at large distances
while p(r) approaches a constant. At short distances, a
may diverge like a logarithm, but p(r) vanishes linearly,
causing no trouble to the convergence of the integral.
Therefore we shall no longer consider this term. In the
presence of particle correlation, the form of p(r, r') is un-

known for the state containing a vortex, except at large
distances where it reduces to po(r —r'), the distribution in

the absence of the vortex. We may replace the distribu-
tions by their asymptotic forms in (14) in order to exam-
ine the long distance contributions to these terms, be-
cause it is only from there that a divergence may ever be
possible. Then, the last three terms of (14) [cf. (15)]
yield
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where p(r) =—(g~b(r —r~)) and p(r, r') =(g;&~8(r —r;)
~&b(r' —rj)) are the one- and two-body density distribu-

tions in the state (12).
The first order contribution to lnO(ro, d) in (14) is

purely imaginary, which can be evaluated as ixpoi (d
x ra) if we replace p(r) by po, assuming that our system
is confined within a disk centered at the origin of r. The
correction due to p(r) —po=pi(r) is zero in the infinite
size limit, because of the rotational symmetry in pi(r)
about ro and the fact that the density depletion decays
sufficiently fast at large distances from ro. This first or-
der term is the Berry phase associated with the Magnus
force discussed in Ref. [14].

The second order contribution to lnO(ro, d) in (14) is

purely real, and must also be negative as required by the
fact that ~O(ro, d)( ( I for nonzerod. Therefore,

d 1
" d k

p,so(k) IF(k) I'+
4lg 2 " (21r)

(16)

where " " stands for the correction due to short dis-

tance contributions, So(k) the static structure factor in

the absence of the vortex, and F(k) i2rre' "i d&k/k
the Fourier transform of d zx(r —r())/)r —ro) . It is

known [13] that So(k) = hk/2Mc for small k, where M is

the atomic mass and c the sound velocity. The integral in

(i 6) therefore converges, meaning that the second order
expansion in (14) exists in realistic situations.

Before we proceed further we comment on the validity

of the above discussions. We have ignored multiparticle
correlations induced by the vortex in the original wave

function (12) and in the evaluation of the expression
(14). We assume that the induced correlations decay
suSciently fast away from the vortex center, such that

they do not affect the convergence properties at large dis-

tances. The situation at short distances is very complicat-
ed [10], and the short distance contribution can substan-

tially reduce the overlap function. We expect, however,

that the system should behave smoothly at short dis-

tances, so that no divergence can be induced from there.
Our later arguments will only be based on the conclusion
drawn above that the decay length Id) is finite.

The decay length ly strongly depends on the interaction

between the atoms in the superIIuid. As the interatomic
interaction becomes weak, the sound velocity decreases,
which makes So(k) large and therefore lq small from

(16). In the extreme case of no interatomic interaction,

ld becomes zero. This is just what one should expect
from a direct calculation of (14) in the free boson limit,

in which case p(r, r') =p(r) p(r') (N —1)/W.
With the overlap integral evaluated both from the

effective theory, (10), and Feynman's many-body wave

function, (15), we now would like to see how the parame-

ters of the effective theory should be constrained. First,
the parameter po in the Magnus force of the effective

theory is the same as the 2D superAuid density from the

comparison of the results for the Berry phase term of the

overlap integral. Second, in order to be consistent with
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the result of finite lg from Feynman's many-body wave

function, {16),the integral in (11) has to be convergent,

implying that the spectral function J(ta) must vanish fas-
ter than co at low frequencies and (M(k)( must be less

singular than k ' at small k's. A comparison of (16)
and (11) suggests that in the low frequency limit

J(to) = to
hpo

2Me
(17)

In the language of quantum theory of dissipation [15],
this kind of coupling is of the so-called super-Ohmic type.
In a recent study of vortex tunneling in [16], a general
heat bath is considered. It is found that a super-Ohmic

coupling to the heat bath has a negligible effect on the

tunneling process at low enough temperatures.
As for the mass of the vortex, our result of finite decay

length implies that the mass of the vortex cannot be

infinite; otherwise the localization length of the vortex
would shrink to zero according to (8) and the decay
length of the overlap function would become zero accord-

ing to (11). Therefore, our result is consistent with that
of Refs. [6,7], which suggest that m, , is zero or finite, and

is in apparent disagreement with that of Ref. [8].
The vortex mass that we originally introduced in (1)

may have already included the effect of renormalization

by the polarization of all but the low lying excitations of
the superfluid. There is still a possibility that it may be
renormalized to infinity if the polarization of the low ly-

ing excitations is included. Indeed, if we neglect the

Magnus force, a straightforward perturbative calculation
[12] shows that the mass renormalization becomes loga-
rithmically divergent if the coupling spectrum J(ca) goes
as ca2 at low frequencies. This is essentially the result in

Ref. [8]. The divergence becomes more severe if J(ai)
would vanish slower than ta2

The situation in the presence of the Magnus force is

quite different. One can no longer set up a momentum

eigenstate and extract an effective mass of the vortex
from the momentum dependence of energy. A more nat-
ural approach is to relate the effective mass to higher
Landau levels of cyclotron frequency ta, hpo/m„. In-

teraction with low lying excitations may shift and

broaden the higher Landau levels, but these effects are
not divergent in a perturbative calculation using (2).
Therefore, if the higher Landau levels are well defined
before turning on the coupling to the low lying excita-
tions, we can conclude that further inclusion of such cou-

pling has little eA'ect on the higher Landau levels and
thus the effective mass of the vortex. To observe a higher
Landau level experimentally, one may trap ions in vor-

tices produced in a rotating film of superAuid, and excite
the vortices by electrical coupling to the ions [17].

Finally, we remark on the generality of our results. As
long as the Feynman description of a vortex state is valid,
everything else just follows from basic many-body physics
such as the form of S0(k) at small k. As long as So(k)

vanishes with some positive power of k, orthogonality ca-
tastrophe in the overlap integral will not occur. Thus, our
results may also be applicable to vortex structures in su-

perconducting films and wire networks, Josephson junc-
tion arrays, and quantum spin systems.
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