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Theory of Nucleated Wetting
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We compare a new theory of nucleated wetting with experimental data for the critical liquid mixture
hexadecane + acetone. Good agreement is obtained for t ~ 8 x 10 . We determine that the droplet
line tension X=Xot where Xo-I X10 erg/cm and x=0.76+ 0.02 while the spreading pressure

S= Sot ' where S0-0.007 erg/cm . Theory and experiment exhibit a minimum in the nucleation data
at a reduced temperature of t (=0.00022 for an upper hexadecane-rich bulk phase of height L =0.56

2/3(P -P)
cm); theory predicts that t scales as -L
PACS numbers: 64.60.Qb, 05.70.Fh, 64.60.My, 68. I0.3y

In recent years there has been intense interest in the
area of nonequilibrium wetting eAects. Many new phe-
nomena have been observed such as surface-directed spi-
nodal decomposition [I], wetting during spinodal decom-
position [2] (which we call "spinodal wetting"), non-

equilibrium effects on wetting and adsorption [3], nu-

cleated wetting [4,5], and metastable surface states and
layering transitions [6]. This field is in a rapid state of
flux where the experimental observations are still being
clarified and where often no well-developed theory exists
which can quantitatively explain the observations.

In a recent Letter [4] we described the new phe-
nomenon of nucleated wetting where upon quenching a

critical binary liquid mixture from the one phase region
into the two phase region at time r =0 s we observed that
after an initial transient (which we attributed to spinodal
wetting) the binary liquid/vapor surface entered a meta-
stable surface state (Fig. I) which had all of the charac-
teristic properties of critical adsorption [7,8]. This meta-
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FIG. I. Variation of the ellipsometric signal p as a function
of time z for a critical hexadecane+acetone sample after a tem-
perature quench of 0.668 C at r =0 s. After an initial tran-
sient near r =0 s the surface drops into a surface metastable
state (region A); at r =so wetting droplets of the heavier p
phase nucleate and grow at the av surface (region B); eventual-

ly all of the wetting droplets coalesce into a uniform film (re-
gion C). The inset shows a wetting p droplet of lateral radius r,
aP radius of curvature R, and thickness h, at the av surface.

stable state had a surprisingly long lifetime ro of many
hours where the lifetime was found to depend upon the
reduced temperature t =

~ T, —T~/T„where T is the tem-

perature to which the system had been quenched. At
time r =so the ellipsometric signal p became very noisy
indicating that wetting droplets of lateral radius r and
thickness h (Fig. 1, inset) had nucleated at the liq-

uid/vapor surface. In [4] we explained the nucleation
time by introducing a line tension L into the excess sur-
face free energy of the droplet

F = —Sttr +X2trr+ Wttr /h +t5pgLV .

Here the spreading pressure S =o„.—o~,,
—o,p, e;~ is the

surface tension between phases i and j, Wtrr /h is the
dispersion energy contribution [9,10], and dpgLV is the
gravitational contribution with hp=pp —p„g the ac-
celeration due to gravity, L the height of the bulk a
phase, and V the droplet volume. The upper (lower)
liquid phase is a (P) and P droplets nucleate at the ai
surface (Fig. 1). In [4] we suggested that the dominant
terms in (1) were the line tension and the spreading pres-

sure; the io data could be explained using classical nu-

cleation theory provided that J -t" with x-0.83.
This simple theory cannot explain recent observations

at very small reduced temperatures where the nucleation
time exhibits a minimum at a reduced temperature t„,
-0.0002 and then diverges for smaller t (Fig. 2). There
are also a number of problems with the theory in [4]
which stem principally from treating the parameters r
and h as independent variables.

The objective of this publication is to develop a new

theory of nucleated ~etting, whose underlying theoretical
basis is more appropriate for the physical situation, and

which quantitatively describes most of the experimental
observations. In the process we will be able to deduce
quantitative estimates for both the magnitude and ex-

ponent of the line tension and the magnitude of the

spreading pressure for the liquid mixture hexadecane +
acetone. These quantities are in general very diScult to
measure. The theory also predicts that the minimum in

the nucleation time at reduced temperature t scales as
—L ', where pi is a surface critical exponent
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which will be determined from (3) once V, has been

determined. Droplets with V greater than (less than) V„

grow (evaporate) as in normal classical nucleation theory.

From (I), (2), and (4) we obtain the equation for the

free energy of a steady-state droplet of volume V:

' I/2 ' i ]/4

F(V) =2K

i I/2
2V 1 S hpgLa
a a' . (5)
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10 10 10 The critical droplet volume V, is determined by the con-

dition r)F(V)/BV =0; therefore,
FIG. 2. Comparison of the nucleation time ro as function of

reduced temperature t with theory. Experimental data (ppen
squares); theory as given by Eq. (IO) (solid line). See text for
details.

V =Ah/2 =nr 2h/2, (2)
where we model the droplet as a spherical cap; hence the
factor of —,

'
in V [13). We assume that after this droplet

nucleates at the surface the local surface kinetics are
sufftciently rapid that the droplet thickness readjusts itself
under the inIIuence of the surface potential to minimize F
for axed V. Namely, the droplet shape kinetics are much
faster than the droplet growth kinetics which are deter-
mined by diffusion. This treatment is similar to the
spreading kinetics of a droplet of fixed volume V on a
solid surface considered by de Gennes [11]. However, de
Gennes considered the slow spreading of a very viscous

polymer droplet. In this paper we consider a low viscosity
liquid mixture where the droplet is expected to acquire its
"steady-state" shape very quickly.

By minimizing (I) at fixed V one obtains the following
equation for h [141:

(=0.83 [12]) and P is the usual bulk critical exponent
describing the shape of the coexistence curve. We note
that this new theory for the nucleation time r p reduces to
the form given in [4) in the limit of large t» t; hence
one can also understand the good agreement observed
previously between theory and experiment.

This new theory will again use the simple model of a
nucleated wetting droplet given in (I) where we assume
that the contact angle 8 is very small (R»r»h; Fig. I

inset) because we are above the wetting transition. In
this paper we will not treat r and h as independent but in-
stead consider a droplet of fixed volume [10],

where Xp and x are, respectively, the amplitude and ex-

ponent of the line tension and the constant

Cp =3/ap . (9a)

The probability of nucleating a critical droplet is p
—exp[ —F(V )/kttT], where ktt is Boltzmann's constant,
and therefore the nucleation time rp- I/p-exp[F(V, )/
kBT]. A further simplification can be made in analyzing

the experimental data by noting that a minimum occurs
in the nucleation data rp at a reduced temperature of
t -0.0002 (Fig. 2). This minimum in rp must corre-

spond to a minimum in F(V, ); therefore from the condi-

tion that 8F(V, )/r)t =0 we obtain a second condition for

the constant Cp.'

p, p 2x —Pi
Co =tm

traX v'W/S (6)
2[S(I —a 2) —(hpgLa/2)VW/S ]

Finally the value of a can be determined by substituting

(4) and (6) into (3). We obtain
]/2 1/3

4S S '

(PI
—P )/2a= =apt

hpgL W

where ao=[4So(So/Wo) t /lhpogL] ~ S =Sot ' [16], &p

=5pptn, W=Wpt~ [9], and the terms with a subscript 0
represent temperature independent amplitudes. The

height of the droplet nucleation barrier is determined

from (5) with V=V„

&g2t 2x P

F(V, ) =
S.(t' ' —Co)

'

X+~h/2V —S+3W/h =0. (3)
%'e therefore fit the nucleation data by an equation of the

form

h =adW/S, (4)

where a is a volume independent dimensionless parameter

For large droplet volumes h = (3W/S) 't while for small
droplet volumes near the critical droplet volume, V„we
assume that [15]

Bt 2x —p
tp=A exp [t' -'-t.' '[(2.—P, )/(2x —P)]](I-t),

(10)
where 2, 8, and x are adjustable parameters and 8 is re-
lated to Lp and Sp by
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B=nJp//SpkaT, .

A nonlinear least squares fit of the ro data in the range
t ~ 8X IO to Eq. (10), assuming an error of + 20k in

ro, gave x=0.76+0.02, 3 =2000+ 200 s, and 8=90
+ 20, where the errors represent 1 standard deviation
and the reduced chi squared g =2.7. g is sensitive to the
value assumed for t —in our calculations we have taken
t =0.00022 which corresponds to a minimum in g . In

Fig. 2 we show the good agreement between the experi-
mental data and Eq. (10) for the parameters given above
[19]. The experimental data at very small reduced tem-
peratures below 7X IO could not be explained by (10).

According to this new theory the divergence in rp at
very small t occurs when the spreading pressure contribu-
tion becomes comparable to the sum of the dispersion and
gravitational energies [see Eq. (I)], at which point the
denominator in (10) vanishes. The moderately large g
and the disagreement between theory and experiment for
t ~ 7x10 can probably be attributed to our very sim-

ple model of a nucleated wetting droplet. We have as-
sumed that the contact angle is negligible and we have ig-
nored the fact that the critical aP interface of the droplet
is diffuse and diverges proportional to the correlation
length g. Capillary wave contributions [20] have also
been omitted from the free energy in (I). We note that
there are some experimental diSculties at very small
f & 8x 10, where the sample temperature drifts down

very slowly towards equilibrium over many, many hours.
(Far from T, thermal equilibrium is attained in -0.5 h. )
We believe this eA'ect is due to the release of heat during
mixing as the sample spinodally decomposes [211. Such
an eA'ect is particularly important for very small reduced
temperatures where the phase separation process is slow

and where locally the heat of mixing can raise the tem-
perature even closer to T, or even back into the one phase
region.

This theory enables us to determine a number of pa-
rameters which are in general very difficult to measure.
From (9a) and (9b) we determine that Sp-0.007
erg/cm where for our hexadecane + acetone sample we

have used Lapp=0. 0375 g/cm [22], L =0.56 cm, and
Wp-2. 9X 10 ' erg [23]. Similarly from (I I) we deter-
mine that Xp-I X IO erg/cm using T, =304.265 K.
The magnitude of Xp is qualitatively similar to line ten-

sions found in other liquid systems [24] determined using
diA'erent techniques. The approximate size of the nu-

cleated droplets can also be calculated. From (4) and (7)
the critical droplet thickness is temperature independent
with h, =up(8'p/Sp) ' -38 nm, while near the nu-

cleation minimum at t the critical droplet radius
r, -560 nm [using (2) and (6)]. This droplet has a
diffuse aP interface as (—40 nm [23) and a small contact
angle, 6-4 . Unfortunately hexadecane+acetone and
also most polar liquid mixtures are not ideal candidates
for testing this theory as they exhibit a rather complicat-
ed dispersion energy curve as a function of depth into the

liquid [23,25]. In the calculation above we have used an
effective Hamaker constant determined from the disper-
sion force curves when h-30-40 nm [23].

It has been suggested that X-kgT/g-t' using an ar-
gument similar to Widom [26] for the critical interfacial
tension. If we assign x =v then (10) does not ftt the ex-
perimental data (g —2000). We believe the problem is

related to the presence of a noncritical (-0.5 nm) and a
critical correlation length (g-I ") for the nucleated
droplet. It seems possible that L might scale as t' near a
tricritical point ~here the vapor phase has been replaced
by a critical phase.

In conclusion, we have proposed a new theory of nU-

cleated ~etting which gives better agreement with experi-
mental observations over a wider reduced temperature
range. This new theory predicts that the reduced temper-
ature I scales as -L '; it allows us to determine
estimates of the magnitude and exponent for the line ten-
sion and the magnitude for the spreading pressure for the
critical liquid mixture hexadecane+acetone. Further ex-
tensions to this theory are required to account for nonzero
contact angles, the diff'use aP interface, a more realistic
description of the dispersion energy, droplet growth, and
coalescence.
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