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We report the observation of phospholipid vesicles of high topology, exhibiting strong thermal
fluctuations. By deeply affecting the global shape of the vesicle, these difFer from the usual local
thermal undulations of the membrane. They can be described as positional fluctuations of necks
linking tvro nearby concentric membranes. Using boundary layer methods vie determine the shape
and elastic energy of the necks and corroborate this analysis by a numerical solution of the mini-
mization problem. This approach leads to a qualitatively correct description of our experiments.

PACS numbers: 82.70.—y, 02.40.—k, 68.15.+e

Artificial vesicles are closed membranes made of a
phospholipidic bilayer. They have been extensively stud-
ied both theoretically and experimentally when their
shape is a deformed sphere (surfaces of topological genus

g = 0) [1]. Surfaces of genus g = 1 (and very recently of
genus 2) were described theoretically [2,3] and observed
experimentally in our laboratory [2,4]. For higher genus

g surfaces (g ) 2), obtained by adding g handles to a
sphere, no exhaustive theoretical calculations are avail-
able [5]. We report here the first observation of Huid vesi-
cles with g ) 2, exhibiting strong thermal fluctuations.
These are vesicles of small volume to surface ratio, which
look like two nearby concentric membranes connected by
tubular links (referred to as "necks" in the following):
these necks wander around the surface, their relative dis-
tance varying by a factor of 2 in certain cases (see Fig.

{a}

:=" (b)

FIG. 1. Two snapshots (a few seconds apart) of two fluc-
tuating vesicles of genus 2 (a) and 4 (b) with reduced volume
o 0.4 [7]. The necks are indicated by arrows. Notice the
strong () 20%) Huctuations in the interneck distances. Bars
indicate 10 p,m.

K dS.

Our vesicles are prepared using a phospholipid pur-
chased from Avanti Polar Lipids [6], following a stan-
dard procedure described in [4]. The observations are
made at a constant temperature, above the chain melt-
ing temperature (T~ = 43'C), so that the membrane
can be considered as fluid. Vesicles of various shapes
and sizes (roughly 10 lcm) are observed by phase con-
trast microscopy, which shows a cut of the membranes
perpendicular to the focal plane. Pictures are digitized
using a charged-coupled-device camera coupled to a con-
trast enhancing video acquisition board, and saved on a
video tape recorder or on a computer.

Vesicles can be geometrically classified according to
their volume (V) to surface (S) ratio, namely their di-
mensionless reduced volume: v = 6~z'V/Ss/ . Indeed,
in our experiments, their volume and surface remain con-
stant. The limiting cases are U = 1, which corresponds
to the sphere (which cannot Huctuate because it is the
single surface of its class), and v = 0, which corresponds
to an empty vesicle.

We have already observed [4] that the shape of vesicles
with high reduced volume presents only small thermal
Huctuations at equilibrium, as may be expected from a
simple model based on the curvature elastic energy first
introduced by Canham, Helfrich, and Evans [8]:

H dS+R
2

(1)

where e [ (10—20)ksT] [9] and R are the elastic mean
and Gaussian curvature rnoduli. H = cq + c2 and K =
cia are the local mean and Gaussian curvatures (ci, c2
being the principal curvatures) [10]. The high value of
~/krsT is consistent with the experimental observations
for quasispherical vesicles (n 1) that the undulation
modes of the membrane perturbed the overall shape by
only a few percent [9]. This observation holds in fact for
most vesicles of genus 0 or 1. For higher genus and small
enough reduced volume e, however, the examples of Fig.
1 show that strong Huctuations of the global shape are
observed.
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(3)

We solve Eq. (2) by boundary layer methods [11],dis-

tinguishing between two regions where Eqs. (2), (3) have
simple asymptotic forms.

Outer solution. —Far from the neck (a (( r ( L/2),
the derivatives of ( are small: (, gv are O(a/L). To
leading order in a/L we may neglect the nonlinear terms
in (3) and set H ~ —b.(. We have thus to solve the
usual biharmonic equation describing small fluctuations
of a flat membrane:

AH = —b,z( =0. (4)
The solution of Eq. (4) describing a neck and satisfying

the PBC H(x 6 L, y + L) = H(x, y) can be obtained

by solving the electrostatic (Poisson) problem given by
integration of Eq. (4):

H=—6( = 4z—cr = 4mq/L—, (5)
with a point charge q = —a/2 at the position of each
neck, and PBC. The constant charge density (curvature)
o = q/Lz on the r—ight hand side of Eq. (5) enforces
the neutrality of the equivalent infinite periodic system
of charges, i.e., it avoids the divergence of ( at infinity.
The solution of Eq. (5) with PBC is (z = x+ iy)

rn)0
7lG

Inner solution. —Near the neck (a & r (( L/2), the
nonlinear terms in H cannot be neglected anymore [(~,g„
are O(1)]. However the minimal surface (MS) solution
H = 0 clearly solves Eq. (2). It is the catenoid: (;(r) =
a cosh '(r/a).

Since the asymptotic form (r )) a) of the catenoid
diverges logarithmically [(;(r) ~ aln2r/a], this inner

(6)

To understand this unusual behavior, we determine the
shape of one neck, Rom which we deduce its energy and
the energy of interaction be~~men necks. For the sake
of simplicity, we consider the shape of a neck of (mean)
radius a linking two asymptotically flat parallel surfaces,
and in order to have a Suite volume, take square parallel
pieces of membrane of size I, x L with periodic boundary
conditions (PBC): The system is thus equivalent to a
neck connecting two identical tori or to a periodic 2D
lattice of necks, with an elementary square cell of size
L x L.

The problem now is to find a shape minimizing the
elastic energy [Eq. (1)]with PBC on this cell. Minimize
tion of Eq. (1) leads to the Euler-Lagrange equation:

hH+ 2(H' —K)H = 0. (2)
In the Monge representation where the deviation of the

membrane from the (x, y) plane is given by g(z, y), the
curvature H is [8]

' ~ I

FIG. 2. Shape of the neck for a/L = 0.1.

solution matches to leading order with the outer solu-
tion (,(z, y) which also diverges logarithmically when
r &( I/2 [(,(r) aln2r/a). Hence, if we consider only
the solution around the (m, n) = (0,0) site, a uniform
leading order approximation to the shape of the neck is
[»]

(„»r(r)= (,(r) + (;(r) —aln(2r/a), (7)
which can be easily generalized to the whole lattice.

Therefore, on the scale of a, the inner solution is a
minimal surface. We checked this result by a direct nu-
merical minimization's procedure (Powell's method), see
Fig. 2, which also indicates that the outer solution has
almost constant curvature as predicted by Eq. (5).

To leading order, the elastic energy of the neck comes
from the bending of the outer region:

H dS= 2[2m ~(a/L) ]. (8)2

This result is corroborated by the numerical calcula-
tions (see Fig. 3). There are of course corrections to 8
[of O((a/L)4), see inset in Fig. 3] coming from higher
order corrections to the shape of the neck.

We point out that the stabilization of a finite size neck
[a g 0 in Eq. (8)] is due to the reduced volume constraint.
Indeed, the distance between two membranes connected
by a neck of radius a is of order 2(,(L/2) 2aln(L/a).
The reduced volume v 3/2za/L ln(L/a) thus fixes the
relative size of the neck, a/L, and its energy, C [12].

Up to now, we have dealt with a single neck per ele-
mentary cell of the lattice. We now consider N such necks
on each cell. Since to leading order the outer problem is
linear [Eq. (4)], the outer solution for N necks is a su-
perposition of N single-neck outer solutions. That is also
true for the inner solution for N necks (the catenoid), as
long as their inner regions do not overlap (otherwise, our
axisymmetric inner solution is no more valid). If n necks
(N & n & 2) begin to overlap, the inner proble~or
these necks consists in determining a surface subtended
by n, disconnected contours, with an asymptotic logarith-
mic behavior matching the outer solution. A result due
to Schoen [14] states that the only MS of that kind is the
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FIG. 4. Fluctuating vesicle of very high genus; arrows in-
dicate position of necks; bar indicates 10 p,m.
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FIG. 3. Log-log plot of the elastic energy versus a/L.
Points are the numerical results (E„).Straight line is the
leading order theoretical prediction, E~. The inset represents
the deviation from that prediction (E„—Ei) which scales as

(a/L) as expected (straight line).

catenoid (n = 1): the new inner solution is thus not a
MS anymore (H g 0), implying that the elastic energy
of the system increases. The overlap of the inner regions
of nearby necks is thus energetically unfavorable, leading
to an effective repulsion.

Therefore, to leading order, the necks behave as a gas
of free particles with a hard con: repulsion whose range is
l, = QaL (given by the matching region of the preceding
outer and inner solutions). At long range, l, & l & L,
higher order corrections to the shape of the necks might
lead to repulsive (or attractive) interactions, but these
are expected to be much smaller than the hard core re-
pulsion (and also much smaller than kgT [of O(z(a/l) 4)]
[»])

Although we did not model true vesicles, it is inter-
esting to compare these results to our observations. For
a vesicle of area L x L and N necks, the typical dis-
tance l between two neighboring necks is l L/y N.
These necks will fluctuate freely if l )) QaL, i.e. , if
N « 3v2s/vln(L/a). For v = 0.4, we get N « 20,
which is the case in Fig. 1. The simplest elastic theory for
membranes is thus consistent with the experimentally ob-
served strong thermal fluctuations of the vesicular shape.
These fluctuations are due to a near degeneracy of the
ground state of these high genus low v vesicles. They
are different from the ones considered in Ref. [3], which
result from an exact degeneracy of the ground state of
genus 2, v 1 vesicles, a consequence of the conformal
invariance of the Hamiltonian (1).

Finally we emphasize the generality of our approach:
We restricted ourselves to the case of two stacked mem-
branes connected by lV necks, which is adequate for
Fig. 1. In fact we observed topologically more compli-

cated vesicles, which can be described as many concentric
nearby vesicles, connected by necks (see Fig. 4). Previ-
ous observations of such a topology had already been
reported [16]. We can model these configurations by a
periodic lattice (in the 2:, y directions) of M membranes
connected by N necks. Let us consider for instance the
simplest case M = 3, N = 2 (see Fig. 5). Far from
the necks (outer solution), we solve Eq. (4) using the
electrostatic analogy. The upper (u) and lower (l) parts
are surfaces of almost constant mean curvature, as ob-
tained previously. The middle (m) surface is obtained
as the electrostatic potential of an in6nite lattice, which
elementary cell contains one +q and one —q charge. As a
consequence, it is a surface of asymptotic zero curvature
(a plane).

The inner solution for each neck is a catenoid if they
are far enough one from another: in this case they do
not interact, for the same reason as before. As they get
closer, the elastic energy will remain constant if there
exists a MS of genus 0 [17] which matches with the three
preceding surfaces u, l, and m. But the only MS of genus
0 are the plane and the catenoid [14]. Therefore the inner
solution for two nearby necks is not a MS, and the elastic
energy increases: we conclude that the necks repel.

FIG. 5. Doubly periodic stack of 3 membranes connected
by 2 necks as obtained numerically with SURFACE EVOLVER

[13]by imposing a volume constraint. One has to add a fourth
fictitious planar membrane (not represented here) to define
an inside and an outside. The area constraint comes from the
imposed periodicity. a/L for each neck equals 0.04.
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For the sake of simplicity, we considered up to now

only simple configurations of membranes and necks, cor-
responding to genus-0 inner solutions, and we relied on a
theorem of Schoen to prove their hard core repulsion. In
fact there exist many Ms vrith catenoidal ends sandvrich-

ing planar ones (e.g., the Costa surface and its deriva-
tives) [18],with topological genus g & 0. They would cor-
respond to more complicated configurations (with M & 3
and N & 3), but it is interesting to notice that they would

then lead to the possible existence of bound states of n
necks linking m membranes (M & m & 3, N & n & 3),
i.e. , nonfluctuating assembly of necks.

In conclusion, for sufficiently small density of necks and
reduced volume, strong fluctuations in the position of the
necks are observed, in agreement with our perturbative
approach. In the limit where M -+ oo and N ~ oo, one
recovers the sponge phase. This approach might be an
alternative to previous studies [19] which have dealt only
with the triply periodic case.
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