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Step Motion, Patterns, and Kinetic Instabilities on Crystal Surfaces
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%e study a mesoscopic kinetic model for step flow on crystal surfaces in the presence of impurities.
The evolution of the system of steps in the small line tension limit leads to the formation of complex
highly connected step patterns. We identify repeating features in the patterns and calculate them
analytically by analyzing a simpli6ed mean-field-like model. For the same model we also calculate
analytically the coarsening with time of the typical length scale associated with the patterns. A11

the analytical results are in excellent quantitative agreement with numerical simulations.

PACS numbers: 61.50.Cj, 68.55.Jk

The behavior of atomic steps on surfaces of crystals
is of major importance for crystal growth and evapora-
tion processes [1—3]. For example, vicinal surfaces have
been used successfully as substrates for the fabrication
of nanostructures (e.g. , quantum wires) with the molec-
ular beam epitaxy technique [2]. Stepped surfaces are
particularly useful for these purposes in the step flotv
regime [4], where crystal growth proceeds predominantly
by the motion of fairly straight and uniformly spaced
steps. However, in some cases the uniform step system
becomes kinetically unstable, leading to the appearance
of straight bunches of steps, steps with fingerlike shapes,
and even complex highly connected networks of steps (as
we demonstrate below).

One possible mechanism [5] leading to an instability
was suggested by Frank [6]. He argued physically that
the adsorption on the surface of impurities possessing the
following two properties could lead to step bunching. (i)
An impurity impedes the motion of a step segment imme-

diately behind it. (ii) After the step segment has moved
past or covered an impurity, its effect on subsequent steps
can be ignored.

This idea has been further developed by other re-
searchers [7—10], but only in the limit where the steps
remain straight throughout the entire bunching process.
Here we examine the implications of Frank's picture us-

ing more general two dimensional (2D) models that allow
Huctuations along the step edges.

Our starting point is a semimicroscopic or mesoscopic
2D model for step How in the presence of impurities

[11],which we analyzed previously in the large line ten-
sion limit [10] (where steps remain basically straight
during the entire bunching process). Consider N steps
on a square lattice (with periodic boundary conditions
in both directions), where each step is composed of I
coarse-grained segments that reside on the links of the
lattice. We associate a "line tension" energy favor-

ing straight steps with each con6guration of segments:
E = p P„„[x„(y+ 1) —x„(y)],where x„(y)is the po-
sition of the yth segment of step n, and p is the effective
line tension.

In the absence of impurities, a simplified treatment of
the difFusion of main component atoms [10] leads to the
following rules for step motion: (1) Select a step segment
at random, say segment y of step n (2) A. ttempt to move
it backwards with probability pb = (1 —A)/2, or forward
with probability pI = p~+ A(l —exp[ —W„(y)/lg]). Here

W„(y)—= x„+t(y)—x„(y)is the local terrace width, lg is
the main component difFusion length, and A is a mono-
tonically increasing function of the Hux of main compo-
nent atoms, which vanishes when the Hux is equal to the
equilibrium Hux. (3) Always reject the attempted move
if it leads to terraces of width smaller than 1. (This
corresponds to overhanging steps. ) If this no-overhang
condition is not violated, reject the move with probabil-
ity 1 —exp( —PEE) if it raises the line tension energy by
an amount b,E, and accept it otherwise. Here P is the
inverse temperature. At equilibrium, with A = 0, these
rules reproduce the usual Monte Carlo kinetics of steps
where Huctuations (whose magnitude is controlled by a
line tension) generate an entropic repulsive interaction.

Now consider the adsorption of impurities which in-

corporate properties (i) and (ii) of Frank's model [6,10].
Such impurities arrive at random vacant sites of the lat-
tice (multiple occupancy is prohibited). When attempt-
ing to move a step segment forward past an impurity,
the acceptance probability of the move is reduced by a
factor 0 ( 1 —8 ( 1 compared to the probability in the
absence of an impurity [rule (3) above]. If the move is ac-
cepted, the impurity no longer affects step motion. The
microscopic parameter 8 is associated with the strength
of impurities. If 8 = 0 the impurities are weak, whereas
8 —1 is the strong impurity limit.

We simulate the model in the following may. Starting
with uniformly spaced straight steps and a surface free
of impurities, we alternatingly perform sweeps of impu-

rity deposition and step How. In an impurity deposition
sweep we pick at random I';XIS' sites, vrhere F; is the
Hux of impurities and We is the initial terrace width.
Impurities are deposited in all the selected vacant sites.
Each step How sweep consists of NI attempts to move

step segments chosen at random. The attempts are done
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according to rules (1)—(3) above, taking into account the
effects of impurities on step motion as well.

Figure 1(a) is a snapshot of a system of N = 30 steps
of L = 1000 segments each, aRer 25000 time steps. The
values of the parameters we used are K —= Pp = 0.1,
8 = 0.65, I"; = 0.005, 4 = 10, and A = 0.9. The result-
ing step pattern is very complex and highly connected.
However, several simple repeated features can be easily
noticed: (a) Although the steps are not straight, one can
still identify fairly long straight portions of steps that
have bunched together. (b) There exist points at which
a bunch splits into two smaller bunches; we call these
points vertices. Several vertices are marked on the pat-
tern of Fig. 1(a) by dashed lines. Note that typically the
bunch of steps is straight near the vertex and forms a well

defined angle, say o., with the y axis (the step orientation
in the initial configuration). After splitting at the vertex,
one of the emerging bunches continues in the direction of
the original bunch, while the other makes a turn and goes
in the —n direction. (c) The pattern divides the surface
into cells. Many of them have the typical shape marked
by dash-dotted lines in Fig. 1(a). At the perimeter of
each cell we find vertices, and straight as well as curved
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FIG. 1. (a) A snapshot of a step system after 25000 time
steps of the mesoscopic kinetic model. The simulation pa-
rameters are K = 0.1, 8 = 0.65, F; = 0.005, lg = 10, and
A = 0.9. Steps move &om left to right and are marked by solid
lines. Heavy solid lines correspond to step bunches. Dashed
lines mark vertices, while typical cell shapes are shown as
dash-dotted lines. (b) A snapshot of a step system evolving
according to model (1) with noise. The function f came out
of a mean field calculation [10j with the parmneters of (a).
We used p = 0.1. The vertex structure of the infinite period
steady state is shown by dashed lines.

portions of step bunches.
As time passes, small cells shrink in size, while big cells

expand, leading to coarsening of all the structures of the

step pattern. However, the features we emphasized above

do not change during this evolution. Even the value of

the angle n remains constant.
Our aim now is to understand quantitatively the fea-

tures of the patterns, and the growth of the typical length

scale with time. In order to perform analytical calcula-

tions, we consider a simpler 2D mean-field-like model for

the evolution of the stepped surface Th. is simply adds

a line tension term to the 1D models for step bunching

previously hypothesized by other researchers [7—9], and

also implicitly assumed by Frank [6]. According to this

model, the local terrace widths obey the following difFer-

ential equations:

2

W„+(y)] —f[W„(y)]+ ~ ", (1

where the continuous variable y replaces the discrete co-
ordinate of the mesoscopic model, and the index n in-

creases in the direction of step flow.

The first two terms on the right hand side (r.h.s.) of
(1) induce step flow and account for the efFect of impuri-

ties. We showed in Ref. [10] that in the large line tension
limit Eq. (1) yields an accurate mean field description
of the mesoscopic model presented above. We calculated
the velocity function f analytically, and our results were
in excellent quantitative agreement with numerical sim-

ulations of the mesoscopic model. The resulting function

f (W) has the following properties: it vanishes for vanish-

ing terrace width, and increases with W for small values

of W. It has a maximum at W = W, and for W ) W~
it decreases exponentially to the value f(oo) ) 0.

The last term on the r.h.s. of (1) permits fluctuations
along a step controlled by a line tension. The parameter

p is an increasing function of the efFective line tension p.
Thus, if p: oo the steps are completely straight, and

(1) reduces to the 1D models considered in Ref's. [7—9].
We solved (1) numerically with p = 0.1, after adding

a noise term to the r.h.s., using the velocity function f
that results from the mean field theory of Ref. [10]. In
Fig. 1(b) we show a snapshot of the system. The pattern
is clearly very similar to that of Fig. 1(a) with the same
features: the typical angle n, the vertices, and the typical
cell shape.

Even this simplified model is not easy to solve analyt-
ically. To yield quantitative predictions we make several
additional assumptions. First, the presence of repeating
features in step patterns that slowly coarsen with time
is most naturally explained by assuming the system is
locally close to a set of uieakly unstable steady state so-
lutions of Eq. (1).

Next, we note that the characteristic features appear
fairly early in the evolution of the system. At that stage,
each bunch of steps contains only a few steps. We there-
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fore conclude that these features are due to effects that
are local in the step index, ri .Hence, it is si|fRcient to
calculate steady states which are periodic in n; we do
not expect the periodicity to alter the predictions sig-
nificantly. It is also convenient to consider such states,
because the evolution equation (1) preserves periodicities
in the step index.

Consistent with these assumptions, we now character-
ize atl the steady states of (1), which are of period turo

in the step index n. (We expect higher periods to yield
similar results. ) We will also perform a linear stability
analysis of the resulting solutions, to confirm that they
are indeed weakly unstable. This analysis will lead to a
prediction of the coarsening of the patterns.

The period two restriction takes the form W„(y,t) +
W„+i(y,t) = 2W, with W independent of y and t. Us-

ing this relation for W„+iin (1), we obtain an evolution
equation for W„that is independent of the width of other
terraces. Equating BW„(y,t)/Bt to zero, we get the fol-

lowing steady state equation:

dzW„' dV
dyz dW„'' (2)

where W„'(y) is the steady state solution, and the "po-
tential" V has the form

W'

V(W„')—= [f(2W —W) —f(W)]dW.

Equation (2) obviously has the form of Newton's second
law for a particle moving in the potential V in one di-

mension. W„is the analog of the position of the particle,

p is the mass, and y is analogous to time.
Since f is undefined for negative terrace widths, we

look for solutions of (2) and (3) where the motion of the
particle is bounded in the interval 0 & W„' & 2W. The
particle's trajectory depends on the shape of the poten-
tial V, which in turn depends on the velocity function f
and on the value of the average terrace width W.

The most interesting case arises when W ) W~ (a
discussion of all the solutions will be presented elsewhere

[12]). Then V is symmetric about its minimum at W„'=
W, and has two maxima at W„'= W +b„where b, & W
depends on the function f There is a c.ontinuous family
of solutions of Eq. (2), which are periodic in "time" (the

y coordinate). They are all bounded in the interval W—
b, & W„' & W+ b„and can be characterized by the
integral of the motion of Eq. (2) that corresponds to the
"energy" of the Newtonian particle:

g 2

2W. W„'visits W+ periodically, and the period L(f) is
given as

f dW

g Q8 —V(W)

We argue that these solutions explain the features of
the patterns mentioned above and the coarsening of the
typical length scale. For example, each periodic solution
takes the value W„' = W twice every period. Each oc-
currence of this value of the terrace width corresponds
to a vertex where a pair of steps splits in two. The ver-
tex is localized in a very small region of space (see Fig.
1) because when W„'= W, the "kinetic energy" of the
Newtonian particle is maximal and it stays there for a
very short "time. "

To obtain the angle n, note that the period l diverges
[see Eq. (5)j when 8 approaches its maximal value V(W+
b,). This solution corresponds to an infinite length scale
steady state with a single vertex. Far from the vertex,
the solution approaches a straight line that defines the
angle n In ot.her steady states, with 8 smaller but close
to V(W+ 6), x (y) is straight over fairly long intervals,
and the angle associated with the straight portions is
very close to the one obtained from the infinite period
solution. This property of the long period solutions is
general and holds for any velocity function f with the
properties defined above.

For certain forms of the function f, we can express
steady states in closed analytic form [12]. However, for
quantitative comparisons with simulations, we must nu-

merically analyze the solutions of (2) using the particular
form of f corresponding to the pattern of interest, say
Fig. 1(b), for example. Figure 2 presents such a solution
with a finite period in the y direction. Note the similarity
between the steady state cell structure and the structure
of cells in Fig. 1. The existence of vertices and of the
well defined angle is also apparent in Fig. 2. We can also
compute the infiriite period steady state in the same way.
The vertex structure and the angle a of that steady state
are drawn as dashed lines in Fig. 1(b) near vertices of the
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E is independent of y, and can take any value in the in-
terval [V(W), V(W+ b,)j. The extremal points of the so-
lution associated with a particular value of 8 are W+(8),
such that V(W+) = 8, W+ ) W, and W+ + W
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FIG. 2. A 6nite period Steady state cslculated for the func-

tion f of Fig. 1(b) and p = 0.1.
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pattern. The agreement between theory and simulations
is certainly impressive.

Finally, we show that the steady states we calculated
are weakly unstable. To that end, we linearize Eq. (1)
(with the period two restriction) to first order in the
quantity bW„(y,t):—W„(y,t) —W„'(y). Since the re-
sulting equation is linear, we can separate the variables

y and t by defining 6W„(y,t) = g(y)h(t). The solution
for h is h(t) exp(art), with u being the eigenvalue of
the Schrodinger-like equation

dzg dzV

dye d(W„')~

for the wave function g of a quantum mechanical particle
moving in the periodic potential —dzV/d(W„')2. The en-

ergy eigenvalue is —ur. It is easy to see that g = dW„'/dy
is a solution of (6) with eigenvalue u = 0. Thus for every
steady state, W„',there is a marginal perturbation.

To find out whether these states are actually unsta-
ble or only marginal, we have to calculate the most
unstable perturbation. This eigenfunction corresponds
to the maximal value of u and to the ground state
of the Schrodinger equation (6). For the infinite pe-
riod [8 = V(W+)] steady state solution, dW„'/dy is the
ground state because it has no nodes. Hence the sin-
gle vertex steady state is marginal. The other periodic
steady states turn out to be unstable [12], but those
states for which 8 is close to the maximal value are only
weakly unstable as we anticipated above.

We now expand expression (5) for the period, around
8 = V(W+). We can also expand u ~, the maximal
value of cu, around 8 = V(W+), and use the two expan-
sions to obtain an expression for l in terms of u To.
leading order we get l ~ 1/gu ~. Assuming that the
relevant time scale for coarsening is 1/am~ we deduce
that l tiIz. Note that we predict a much faster coars-
ening process than the one we predicted [10] for the large
line tension limit (l ln t). Our numerical simulations of
the mesoscopic model are consistent [12]with the average
cell size growing as tiI2, but more extensive simulations
are needed in order to provide an accurate quantitative
test.

In summary, the ansatz that our step system is always
locally close to a weakly unstable steady state leads to
analytical predictions of step patterns and their coars-
ening. These predictions are in excellent quantitative
agreement with simulations of the mesoscopie step Bow

model. Moreover, they can be directly compared with
experimental results, using essentially a single fitting pa-
rameter (the impurity strength 8). Other parameters can
be obtained independently from experiments. For exam-
ple, the line tension parameter can be estimated from
an analysis of step fluctuations [13]. We therefore hope
that our well defined predictions for this system will lead
to experimental searches for the phenomena discussed in
this work.
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