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Quasicrystals as a Hierarchy of Clusters
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DiAraction approaches suggest that some quasicrystal structures can be described as hierarchical
packing of atomic clusters. %hen treated as spherical potentials, these clusters may contain "magic
numbers" of electrons which allow exact filling of the electronic shells of the hierarchy of wells. Physical
properties such as high resistivity and diamagnetism are consistent with the model. Formation of quasi-
crystals at very critical composition is also explained.

PACS numbers: 61.44.+p, 71.30.+h

So far, experimental specification of quasicrystal struc-
ture has not reached the accuracy level currently
achieved in regular crystallography [1]. However, the
main features of these structures have been obtained via

diffraction experiments, up to about 90% of the atomic
positions, for perfect icosahedral quasicrystals of the Al-

FeCu [2] and AlPdMn [3] systems. The average struc-
ture of the phason strained AlLiCu [4,5] quasicrystal has

been determined as well, though witkin a lower accuracy
level.

As an example, let us consider the atomic structure of
AlPdMn quasicrystal [3] as obtained from neutron and

x-ray diffraction. The basic elements of the structure are
atomic clusters called pseudo-Mackay icosakedra (PMI)
[3]. The PMI combine into r time as large inIIated

PMI of elementary PMI, and so on ad infinitum (r
=2cos36' is the golden mean) in such a way that the

centers of the PMI, at any inflation step, are arranged in

exactly the same fashion as the centers of the previous

PMI generation, only scaled up by the r inflation factor.
The elementary PMI are made of an external shell of 42
atoms (12 vertices of an icosahedron plus 30 vertices of
an icosidodecahedron) and an inner shell of 8 or 9 atoms

distributed on sites of a small dodecahedron. Contrary to
the regular Mackay icosahedron, which has a full

icosahedral symmetry, the PMI individually depart from

that symmetry because of the partially occupied small

dodecahedron.
Two types of PMI have been observed in the experi-

mentally determined structure of the icosahedral quasi-

crystal AlPdMn [3]. One is basically a regular Mackay
icosahedron with Mn atoms on the external icosahedron

vertices and Al elsewhere, except for some substitution of
a few Mn by Pd atoms. The other one contains about 20
Pd atoms and the rest is Al. Still according to diffraction

data, the atoms and, subsequently, successive generation

of PMI are connected along twofold and threefold bond-

ings. Another experimental fact is the existence of "con-
necting units. " These connecting units are pieces of PMI.
They are arranged in shells having the same density as

PMI [3] and can be looked at as "interfaces" in between

the PMI. These interfaces also obey the inflation rules of
the PMI. They are quite thick and contain about 37% of

the total volume (-1—50/r ) to be compared to the
30% atoms of the clusters which lie on their surfaces, ac-
counting for all inflation leve1s.

The main drawback of this experimentally determined
structure is that the exact composition of each PMI is

not known. We maintain that basically the structure of
AlPdMn is a skeleton made of r -inIIated PMI packing.
This is a little too simplistic but we have no more infor-
mation so far. First order PMI have a diameter of about
10 A and their centers are about 20 A apart. It is as-

sumed that the electronic density is homogeneous through
the sample and equal to its average value. The same
scheme roughly applied also to the experimentally deter-
mined structure of the AlFeCu icosahedral quasicrystal
[2]. In the AlLiCu system, the structure [4,5] also shows

atomic clusters in the form of small (ST) and large (LT)
triacontahedra. Interestingly PMI, ST, and LT have

equal atomic densities of 0.0656 atom/A3 which is also

fully consistent with measured densities [3,4].
The occurrence of icosahedral short range order

(ISRO) in condensed matter is not surprising. Computer
simulation on simple Lennard-Jones potentials confirmed

that ISRO should be energetically favored [6]. Further
evidence comes from the identification of special numbers

in the mass spectra of free atomic cluster beams, corre-
sponding to icosahedrally ordered atomic aggregates [7].
In these free atomic cluster beams the total numbers of
"free" electrons must also be certain "magic numbers. "
A semiquantitative interpretation of these electron mag-

netic numbers has been deduced from a very simple mod-

el [8,9]. If the aggregates are stable, this means that
electrons are trapped in a deep potential well induced by

the positive ions of the cluster. In an extreme simplifi-

cation, such an aggregate may be viewed as a deep spher-

ical square well whose Schrodinger equation reduces to a

Bessel equation. The energy eigenvalues are then given

by

E 2
n, l 2gn, l i

2pa

in which n, l are the usual quantum numbers, p is the
electron mass, a the well radius, and g„I are the zeros of
the Bessel functions Ji+ ii2(kr). The occupation numbers
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M 1 1n= 1+—+ +
N N

or
n =M/N —1. (2)

Thus, the composition for the structure to grow is very
critical.

Actually, the model must be considered in its real
dynamical image. It is indeed assumed that the elemen-

define the so-called electron "magic numbers" M. They
have indeed been observed in free atomic aggregates [8,9]
(Fig. 1). The cluster geometry induces roughly a Lorent-
zian broadening of the level, leading to densities of state
which are in good agreement with the results of tight
bonding calculations [10] [see the first large feature of
n(E) in Fig. 2]. If magic numbers of electrons give rise
to stable, rare-gas-like, free aggregates, one may assume
that slightly different numbers of electrons per aggregate
will produce "connecting clusters" for the same reasons
that non-rare-gas atoms do. This is just considering that
atom aggregates behave like giant atoms.

A particular situation may arise if the number of elec-
trons per cluster is equal to a magic number plus the ex-
act average number n of electrons per atom. The inflated
cluster (a cluster of N clusters, N being the number of
atoms in the elementary cluster) will then dispose of the
same magic number of electrons to stabilize itself. In or-
der to go beyond we must dispose of the same number of
exceeding electrons after each inflation step. Thus, we
have enough electrons to stabilize the currently inflated
cluster and initiate the forthcoming step of inflation ad
infrnitum The. condition can be expressed as

tary PMI clusters confine electrons like a spherical square
well, with potential barriers around it. Electrons tunnel

through these barriers. This can be approximated as hop-

ping within the cluster of the next stage of inflation which

in turn confines electrons in an inAated spherical square
well, and so on. At each inflation stage electrons are
confined by a barrier across which tunneling is harder
and harder. In other words, the effective mass increases
at each stage of the inflation hierarchy. The model pro-
poses to account for such a "hierarchical tunneling" by
stating that only a hierarchically decaying fraction of
electrons per atom is allowed to freely leave the well

states of a given stage of inflation to fill those of the next
stage. Each cluster, at any stage of inAation, constantly
keeps an average number of electrons equal to M to stabi-
lize itself, via intercluster exchanges.

The electron density of state n(E) of the built hi-
erarchical structure can be roughly inferred by consider-
ing the succession of inAated spherical square wells at-
tached to the successive generations of aggregates. The
resulting atomic potential can then be viewed as a deep
well whose bottom is a three-dimensional surface with
hierarchical roughness: The narrowest and deepest wells

are gathered into groups of N on the floor of r wider, r
less deep wells which in turn are similarly distributed into
even wider and less deep wells and so on. The r and r
scale factors come from the inflation growth. The cluster,
and then the attached spherical square well, have a radius
which inflates with the scale factor r . This in turn
forces the number of electronic states per atom speci-
fically attributed to a cluster to decrease with the scale
factor r 9 and the corresponding energy "band" to extend
over a width decaying with the scale factor [see Eq. (1)].
Then, the average number of electronic states per atom
and per energy unit decreases with the scale factor r .
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FIG. l. Energy-level occupations for three-dimensional
spherical wells [8].
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FIG. 2. Schematized density of electronic states. The large
feature on the left hand side is the contribution of the elementa-
ry PMI. Features coming from the successive inflated PMI are
simplified for the dra~ing. Zooming at EF gives a flavor of the
se)f-similar decay of the density of states. The dashed line is a
square-root envelope of the main maxima in the successive clus-
ter feature of n(E).
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The total density of states is qualitatively obtained by
adding the "bonded" states of each well generation, the
unbounded states of one generation falling into the bond-
ed states of the next generation. This total density of
states will thus show the density of states of the basic
clusters on the low energy side, completed by successive
similar features with areas reduced by cumulating scale
factor r (r in extension, r in height) with deep pseu-

dogaps in between. The density of states roughly con-
verges as r up to a Fermi surface like the cutoff given

by the geometric sum

r6
EF AEp g =AEp =1.05906Ep,

0 ~6n ~6
(3)

1.C.,

n(E) -np(1 —E/EF) '".
Empty states at 0 K are distributed into a free electron
band [n(E) —(E —EF) ' ] (Fig 2). O. n both sides of the
Fermi level n(E) increases as a square-root function of
energy changes with respect to EF. But the n(EF) valley
is asymmetric as separating free electron states on one
side (extended over a large energy range with a rather
flat density) form semibonded states whose density in-

creases sharply on the other side. The width of the pseu-

dogaps is zero because the inflation mechanism continu-
ously reduces the well deepness and then progressively de-
generates the energy level into free states.

In summary, the global electron density of states exhib-
its a self-similar geometry and the Fermi surface has a
fractal character. If the lowest energy pseudogap corre-
sponding to the top of the first subband (electron states
for elementary clusters) is typically situated at 10 eV, the
Fermi level is only some 0.5901 eV beyond. The full

width of the successive subbands rapidly falls from 10 eV
to 0.5573, 0.0310, 0.0017, 0.0001, . . . eV. Close to the
Fermi level there is an infinity of decaying pseudodiscrete
levels within an energy range smaller than 5 x 10 eV.
Thus, at rather low energy excitation, say below 0.05 eV
or so, one should observe some sort of semimetal-like be-
havior, with a square-root distribution of electronic states
in both filled valence and empty conduction bands. For a

slightly diff'erent composition that would allow cluster
states to fill up to a certain stage of inAation only but not
ad infrnirunr, the hierarchy would be interrupted at some

energy and the Fermi level fall somewhere within the
valence band. This generates approximant periodic struc-
ture with the density of states at EF scaling as 1/r ".
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in which h, FO is the full extension of the density of states
for the basic PMI. It is easy to realize that only the very
first features have significant surfaces, as illustrated in

Fig. 2. Beyond that, the density of states degenerates in-

to a dense piling up of very narrow features, reasonably
mimicked by a short tail decaying toward EF, following
an equation given by

P

n(E) np/r'~, E =AEp g 6n

The predictions of the models seem to be in good con-
sistency with experimental observation [11-20]. At 0 K
the present model is a perfect insulator and has diamag-
netic behavior due to an electrons being in saturated
states of the well hierarchy. The conductivity o(T) at
T=0 K is not strictly zero for real quasicrystals but there
is a clear trend to this ideal value as the quality of the
samples improves [18-20]. Diamagnetism has actually
been observed [I6].

As temperature increases electrons are transferred
from the bonding states to the conduction band. For
kT ~0.05 eV, i.e., T «600 K the number of free carriers
(electrons in the conduction band and holes in the filled
well band) can easily be calculated using the square-root
shape of the density of states. One find that the number
of electrons in the conduction band increases as T . In
this temperature range only the conduction band is con-
ducting (electron conduction) since holes are created into
flat bands with quite poor mobilities. At higher tempera-
ture, electrons from the state of the small clusters get ex-
cited as well and both valence and conduction bands are
conducting. Thus, o(T) should roughly increase as T i

up to T-600 K and more rapidly above. This is pictured
in Fig. 3 which compares experimental data [18] with the
T ~ power law.

The analysis is also qualitatively valid to explain the
sign changes in Hall constant and thermal power. At low

temperature, free electron carriers (in small numbers)
give weakly negative RH and S. As T increases the flat
small subbands in between the Fermi level and the upper
part of the larger features of the density of states are pro-
gressively stripped from their electron, generating an
eff'ective pseudogap of increasing width. Thus, the behav-
ior becomes that of a poor semiconductor with increasing
energy gap Eg(T) and then positive increasing RH(T),
S(T) values [12].

Within the same scheme, one can calculate the temper-
ature dependence of the total electron energy and the
electron contribution to heat capacity. This result is

dE a: T i and consequently C ~ T i (instead of T
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FIG. 3. Conductivity data fl8] (+) compared with the T'~

power law ( ).
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and T, respectively, for a metal) in the low temperature
range (T ~ 600 K). If so, the usual analysis of the heat
capacity data in terms of a C/T vs T curve would be ir-
relevant.

Finally, the experimental behavior of the optical con-
ductivity is also rather well explained by the present mod-
el. At 0 K, the filled envelope of subbands just below the
empty conduction band can produce optical absorption
via the interband transition only. The optical conductivi-
ty o,~ may be expressed as

o,p 2
M (JDS),

~here e is a constant. M a matrix element for the elec-
tron transition, and JDS, the joint density of states, can
be approximated by the product of the number of states
found in each of the two bands within an energy range
equal to the photon energy bra on each side of EF. A
straightforward calculation, still with square-root en-

velopes, results in o,ncx:hco. Beyond a certain energy
threshold, the two bands are expected to have enough
empty and filled states in good proportion to permit intra-
band transition for a Drude-like behavior to be recovered.
The linear o,p(pro) dependence at low hta and the Drude
decay on the high energy side have actually been ob-
served [15].

Now, it also may be interesting to test Eq. (2) with

respect to the composition of real quasicrystals. Within
the example of the perfect stable quasicrystals, Alos2-
Cuo2ssFeo. izs, Alo7oPdo22Mnoos. AlvoPd2oReio. or Als4-

Cu22Ru~4, the assumed hierarchical structure is based on
an averaged PMI cluster with 50.5 atoms each. In the
above alloys the 60% to 70%%uo of Al will bring about 100
electrons per PMI (valence+3). The valence +1 for Cu
may also be accepted confidently. Transition metals in

alloys have negative valences which, unfortunately, de-
pend on the structure [21]. They should be strongly neg-
ative for the magic number to be 58 (see Fig. 1). Thus,
we are left with M 92 in Eq. (2), which gives 1.86
e/atom. It is then possible to obtain the above real com-
positions if negative valences are close to —2 for Fe, Ru,
Mn, and Re and close to —0.6 for Pd. In Alos7o-
Cuo ~osLio.322 quasicrystals [22] there are 2.14 e/atom
which would also correspond to M 92 in a ST cluster.

In conclusion, we have proposed to related stability and
properties of quasicrystals to a description of their struc-
ture in terms of a hierarchy of aggregates. This is an ex-
tension of both the so-called compartmentalization
analysis [23] and interband transitions via electronic hop-
ping descriptions [18]. This is also consistent with
theoretical calculations [24] in the sense that the reported
confined states should correspond to electron density of
states in the small clusters. The pseudogap eA'ects are
reproduced as well, directly related to physical concepts
and in good agreement with spectroscopy data [25]. Ow-
ing to the very strong criticality, it may also be conjec-
tured that exact chemical composition and local homo-

geneity cannot be easily satisfied in real alloys, which

may result in "experimental quasicrystals" being actually
mixtures of approximants rather than pure perfect quasi-
crystals.
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