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Ising-Like Transition and Phason Unlocking in Icosahedral Quasicrystals
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Using Monte Carlo computer simulations, we find strong evidence for a novel, finite-temperature,
Ising-like transition in the alignment of unit cells in icosahedral quasicrystals. The Ising-like tran-
sition may be related to the transition in phason behavior from a locked (Penrose-tiling-like) phase
at low temperatures to an unlocked (random-tiling-like) phase at high temperatures.

PACS numbers: 61.44.+p, 05.50.+q, 61.50.Ks

In this paper, we present evidence for a finite-
temperature phase transition in the alignment of unit
cells in icosahedral quasicrystals. The phase transition
occurs in models of "energetically stabilized" quasicrys-
tals in which atomic interactions force the structure into
an ideal, quasiperiodic arrangement at low temperatures
[1]. These quasicrystals are analogous to the Penrose
tilings (PTs) in which Penrose matching rules, represent-
ing the atomic interactions, force a perfect quasiperiodic
configuration of tiles, representing unit cells of atoms.
At zero temperature, the ground state of 3D icosahedral
quasicrystals displays planar sheets of unit cells normal
to the twofold symmetry axes. The unit cells within each
sheet are aligned. Above the critical temperature Tq we
find that each layer undergoes an Ising-like disordering
transition analogous to the 2D Ising transition.

We conjecture that the Ising transition is related to a
transition in phason behavior. Phasons are a key feature
that distinguishes quasicrystals from periodic crystals [2].
Phasons and phonons are the two types of elastic Gold-
stone modes exhibited by quasicrystals. Phonons, as-
sociated with uniform translations, are common to both
periodic crystals and quasicrystals; but phasons are asso-
ciated with relative translations of incommensurate pe-
riodicities unique to quasiperiodic structures. On the
microscopic level, the efFect of phason excitations is to
rearrange the unit cells (analogous to rearranging tiles
in a Penrose tiling) [3]. In a 3D Penrose tiling, it is be-
lieved that thermal excitation of phason fiuctuations is

strongly suppressed at low temperatures (in analogy to
pinned phasons in the 1D Frenkel-Kontorova model) and
the elastic free energy is nonanalytic [P oc ]'gatv], where

tv(z) is the phason elastic field]. Following [4], we re-
fer to this as a "locked phase. " Here we explore numeri-

cally a possible transition at high temperatures, T & TU,
to an "unlocked phase" in which phason excitations are
thermodynamically excited and the elastic free energy
is proportional to (%tv)2. (These properties are similar
to "random tilings" (RTs) [4—7].) Specifically, we have
studied equilibrium thermodynamics and searched for a
transformation in thermal mean square phason Huctua-
tions expected for the unlocked phase.

We present numerical evidence for both the Ising-like
transition in unit cell alignment and the phason unlock-

ing transition. The Ising-ordered, phason-locked phase
is stable over a finite temperature range in 3D (whereas,
in 2D, the locked phase is unstable for any finite tem-
perature [5,6]). Since the Ising-like disorder in the align-
ment of unit cells occurs through phason rearrangement,
we conjecture that the two transitions are coincident,
Tr = TU. Our results are consistent with a single critical
temperature, although we cannot rule out the possibility
that the critical temperatures are diIFerent.

Our results are obtained using a Monte Carlo simula-
tion procedure similar to methods used in prior studies
of 2D PTs [6] and 3D decagonal phases [8]. Our model
of the icosahedral quasicrystal consists of a close pack-
ing of prolate and oblate rhombohedra, idealized units
representing atomic clusters [1]. The rhombohedra, 3D
analogs of Penrose tiles, are packed initially to form a
periodic approximant [6,9] to the ideal, icosahedral qua-
sicrystal so that periodic boundary conditions can be
employed. Each approximant is characterized by an in-

teger n, where the approximant contains N„=4I's +3
rhombohedra in its unit cell. (F„areFibonacci num-
bers. ) We use a sequence of increasingly close approxi-
mants n = 3, 4, 5, and 6 corresponding, respectively, to
N„=576, 2440, 10336, and 43 784.

To represent energetics that drives the system towards
an ideal, quasiperiodic ground state at low temperature,
interactions related to the "alternation conditions" de-
scribed by Socolar [10] are iraposed between rhombohe-
dra. Each rhombohedron lies at the intersection of three
criss-crossing "trails" consisting of a string of rhombohe-
dra joined at faces that are parallel to one another. Along
any trail, a given prolate or oblate rhombohedron may
have one or two possible orientations related by refiec-
tion. The alternation condition requires that, for either
shape, the orientations must alternate along the trail. So-
colar has shown that the conditions are "weak" match-
ing rules which force quasiperiodic translational order.
Hence, we assign a Gnite energy ~ for each pair of consec-
utive prolate (or oblate) rhombohedra along a trail which
has the same orientation. The energetics ensure that the
alternation conditions are satisfied at zero temperature.

A Monte Carlo move entails Gipping rhombic dodeca-
hedral elements consisting of two obtuse and two prolate
rhombohedra intersecting at a common, interior vertex.
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Flipping dodecahedra is analogous to flipping hexagons
in 2D PT or RT simulations. [6] The long axis of each
dodecahedron lies along one of the fifteen twofold direc-
tions of icosahedral symmetry; see Fig. 1. If we choose a
basis, eo ——rl(0, 1, 7 ), ei ——rl (r, 0, 1),ez ——il(1, r, 0), es ——~ II II II

il(0, —1,r), e4 ——rl(r, 0, —1),es ——il(—1,r, 0), where rl =
(1+rz) i~z, then the dodecahedron with long axis par-
allel to the x axis has edges along the four basis vectors,

ei, e4, ez, and —esI. For each of the fifteen directions,
there are two distinct ways of packing four rhombohedra
to form the dodecahedron, corresponding to two difFerent
interior vertex positions. We assign the two possibilities
an Ising-like "spin" value, +1. Flipping consists of trans-
forming the dodecahedron from one spin to the other.

Consider the set of dodecahedra with axes parallel to
the 2: axis, say. Each dodecahedron can be assigned to a
sheet N„

N, = ng+n4+ng —n5,

where the interior vertex point is v = Pt n;e, . N, is
defined such that flipping a dodecahedron changes the
n;, but N, is unchanged. In perfect 3D PTs, the dodec-
ahedra self-organize into planar "sheets" within which
dodecahedra have a common spin orientation. Also, the
dodecahedra occupy only a subset of sheets N„sothat
some sheets are densely filled with dodecahedra and some
are sparsely occupied. With increasing T, phason ex-
citations (Monte Carlo flipping) disorder the alignment
among dodecahedra in each sheet; some original dodec-
ahedra are broken apart and some new dodecahedra are
formed. The new dodecahedra can occupy sheets not
found in the perfect tiling. We note that the RT phase
has a nonzero density of dodecahedra for each N, (aver-
aging over ensembles) indicative of positional disordering

of the dodecahedra.
The Ising-like transition entails a misalignment of do-

decahedra spin orientations within sheets. We intro-
duce a new order parameter, the sheet magnetization
m, = P,&~ &

8;&N ), where 8, = +1 is the Ising-like value
of the ith dodecahedron in sheet N, . We also define the
net magnetization [11],
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where Nq is the total number of dodecahedra in the
count, and the outer sum is over orientations z [12].

For the simulations, we randomly select a vertex and
check if it is the interior vertex of a dodecahedron; if
it is, we determine whether to flip it or not according
to the Metropolis Monte Carlo (MC) procedure assign-
ing energy z for each alternation rule mismatch. For a
simulation with N vertices, N random selections com-
prise one MC step. Several runs of 20 000 MC steps after
initial equilibrium stage were performed, and data were
gathered every 25 MC steps. The fraction of vertices
corresponding to interior points of dodecahedra in the
infinite volume limit approach 0.175 at infinite temper-
ature and 0.236 at low temperatures, in agreement with
known values for the RT and PT limits, respectively.

Figure 2(a) indicates the order-disorder transition of
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FIG. 1. (s) A rhombic dodecahedron composed of two pro-

late and taro oblate rhombohedra joined at a central vertex
(circle). Since the vertex lies on the long axis (along the x
axis) off center to the right, the "spin" is defined to be along
the x direction. (b) A projection of the 3D simulation st zero
temperature, showing only the dodecahedra oriented along
the vertical axis. The dodecshedrs lie on (horizontal) planar
sheets. The arrows indicate the spin. Note that all dodeca-
hedra in a given sheet have the same spin.

FIG. 2. (s) Sheet magnetization. The dotted lines corre-
spond to sn infinite system. (b) Scaling behavior illustrated
in plot of mLS "vs tL using the 2D Ising values P = 0.125 snd
v = 1.0. The data for the two largest simulations, N = 43 784
and N = 10336, collapse onto a common line. The critical
temperature is estimated from the peak of the susceptibility
(Fig. 3). Error bars sre smaller than the symbols for most
points.
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the sheet magnetization. The specific heat appeared to
be slowly diverging but no latent heat release was ob-
served. In Fig. 2(b), we show scaling behavior in a plot
of mL~/" vs tL, where t = (TI T—)/TI [11].For 2D Ising
exponents, )9 = 0.125 and v = 1.0, the data from the two
largest simulations collapse onto a common straight line.
(The 3D Ising exponents are P = 0.31 and v = 0.64.)
Figure 3 shows susceptibility defined by [11]

y = ((Ngm, }—(Nsm, ) (m, })/k~T,
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FIG. 3. Susceptibility. Tg is estimated. as 1.52 + 0.05.
The inset shows a portion of log-log plot below Tl for the
N = 43784 system. The solid line corresponds to p = 7/4,
the value for the 2D Ising exponent.

where ( } denotes the ensemble average. The transi-
tion temperature TI and critical exponents below TI ob-
tained from the largest simulations are lrBTr = (1.52 +
0.05)c, p = 1.7 6 0.1, where y ]t]

Hence, an intriguing analogy is found between a phase
transition in the alignment of unit cells in d dimensions
and the Ising transition in d —1 dimensions. In SD
(2D), the quasicrystal contains dodecahedra (hexagons)
arranged in planar sheets (linear trails). In each sheet
(trail), the interactions, whether alternation conditions
or Penrose matching rules, induce alignment of the do-
decahedron (hexagon) spins within each layer [10]. Over-
all, the structure consists of grids of parallel sheets
(trails) with difFerent grids oriented along different sym-
metry directions. The grids are not completely equivalent
to an ensemble of d —1 dimensional Ising models: (1) The
interaction within a layer is not nearest neighbor; rather,
it is communicated through finite-range alternation con-
ditions (or matching rules). (2) There are interactions
between sheets (trails) with difFerent orientations where
they cross one another. However, these difFerences have
no apparent affect on the critical behavior. Quantita-
tively, the critical exponents found here for the SD tran-
sition ()9 = 0.125 + 0.010; p = 1.7 6 0.1) are in good
agreement with the exponents for the 2D Ising model

(and clearly distinct from the 3D Ising model, P = 0.31
and p = 1.25). Numerically, our largest SD model gives
results comparable to 10x 10 2D Ising simulations. In 2D,
the unlocking tr~~ition for PTs is at zero temperature
[6], as is the 1D Ising transition.

The Ising analogy does not capture all aspects of the
structural difFerence between the two phases, though.
There appears to be an associated positional disorder-
ing of the dodecahedra in SD. At low temperatures, we
find that the dodecahedra lie in a restricted subset of
sheets N, ; hence, very high densities of dodecahedra are
found for some values of N„and very low densities for
other values. At the phase transition, so far as we can re-
solve, the sheets with high density of dodecahedra break
up through the destruction of mme dodecahedra and the
creation of new ones in different sheets. The net result
is that the dodecahedra become rather homogeneously
spread in N, .

To study the unlocking transition, we compute the
temperature-dependent behavior of the mean-square
phason fiuctuations as a function of system size, L. In
a 3D packing of rhombohedra, each vertex position can
be expressed as x = Q,. on, iI, where n; is an in-

teger. The associated value of the phason variable is

w(x) = Q,. on, e~, where e+ are the complementary,
"perpendicular space" unit vectors [4]. Then, the mean
square phason fiuctuation for a system with N tiles and
linear dimension L is [13]

(w )z =
(
—) w(x) ——) w(x)

x X

where the brackets denote ensemble average. In the un-

locked phase, (is2)1, increases with L (for sufficiently
large L) as a —(/3/L), where a and P are temperature
dependent. Unlocked behavior is usually associated with
"random tilings" [4—7] in which no Penrose matching
rules are imposed and, consequently, there is no long-

range alignment of unit cells. Although all close-packed
configurations of unit cells have equal energy at zero tem-
perature, it is conjectured that finite-temperature phason
excitations select out quasicrystalline order as the state
of highest entropy and, consequently, lowest free energy.
Here we find that energetically stablb~& quasicrystals
display this behavior at sidficiently high temperature, as
had been suggested previously [5,6].

Figure 4 illustrates (is2)L, vs 1/L. For T ) 2.5, (n)z}L,
increases with I, as a —(P/L) (approaching a from be-

low), from which we infer unlodred phason behavior. For
T = 1.0 (or below), (u)2)1, decreases monotonically with
L towards the zero-temperature Penrose value, 1.24. Al-

though there is no rigorous elasticity theory for describing
the locked phase, this behavior is consistent with locked

phason fiuctuations and inconsistent with an unlocked

phase Hence, we infer an unlocking transition in the
range 1.0 & T + 2.5. Note that the increase in (n) )I,
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cells. At this point, our numerical simulation results are
consistent with this conjecture, but we cannot rule out
the possibility of two ddferent transitions. Through fu-
ture nuxnerical and analytic work, we hope to clarify the
nature of the phase transitions and explore the conse-
quences of the Ising-like order for other physical proper-
ties of quasicrystals.
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FIG. 4. The mean square phason fluctuations (xs )x.
vs 1/L where I, is the linear dixnension (oc N' ) and
N = 576, 2440, 10336, and 43784. For high temperatures,
(xu )x, increases as a —(P/L), implying unlocked behavior,
whereas for low temperatures it decreases.

with L only sets in for sufficiently large L, where the req-
uisite L increases as T approaches the critical tempera-
ture. (For example, the T = 10 curve increases mono-
tonically, but the T = 3.3 increases only for N ) 2440 or
1/L ( 0.07.) Our limited computer capacity prevents us
from extending the curves towards larger L and thereby
more precisely determining the transition temperature.

In summary, we have found numerical evidence for
both an Ising-like transition in the alignment of unit
cells and a phason unlocking transition. The Ising tran-
sition implies a hitherto unknown symmetry change that
appears to have no efFect on the long-range transla-
tional or orientational order. The phason unlocking
transition had been postulated previously [3,6] on the
basis of comparison with the unpinning transition in
the ID Frenkel-Kontorova [14] (FK) model. In the
FK model, balls connected by springs are draped on a
sinusoidally corrugated potential. The phason mode, in
which the balls are translated with respect to the po-
tential, may be pinned or unpinned depending upon the
coupling strength between the balls and the potential.
The analogy break is suspicious, though, since the qua-
sicrystal is no analogy to the corrugated substrate. Our
conjecture is that a better understanding of the unlock-

ing transition can be obtained by relating it to the Ising-
like transition and the associated symmetry brealdng. In
fact, we suspect that there is only a single transition,
TI = TU, and that the growth of phason ffuctuations is
directly linked to the disordering in the alignment of unit
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