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Harmonic Modes in a Hard Sphere Fluid
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The velocity time correlation function of a hard sphere fluid has been calculated using a gen-
eralized Langevin formulation of kinetic theory. When the memory function is approximated by
its zero time value, the Langevin equation describes an overdamped harmonic oscillator in which
the damping term arises from Enskog (uncorrelated collision) friction and the oscillator frequency
arises from three body correlated collision sequences. For very high density fluids, the velocity time
correlation function is in good agreement with molecular dynamics simulations on hard sphere fluids
and the vibrational frequency is in close proximity to the Debye frequency of argon.

PACS numbers: 61.20.Gy, 05.20.Dd, 51.10.+y

During the last few years, there has been an increasing
interest in the dynamics in very dense liquids and glasses.
One extreme viewpoint is that a dense fluid supports
harmonic motions [1-3] and accordingly possesses some
normal mode character. At the other and more tradi-
tional extreme, dynamics in dilute hard sphere fluids has
been treated within the Boltzmann-Enskog depiction of
completely uncorrelated collisions [4,5] with allowances
for the correlated collision sequences [6,7]. Both of these
limiting behaviors can be portrayed simply in the hard
sphere fluid using the generalized Langevin equation for
the velocity time correlation function (TCF) [8].

In the generalized Langevin framework, the veloc-
ity TCF evolves subject to uncorrelated collisions (en-
forced by the Enskog friction coefficient) and to corre-
lated caging collisions (represented in the memory func-
tion). If the hard sphere is confined, as would be the case
in a very dense fluid or glass, then the memory function
will be a constant; i.e., its zero time value [9] and the
diffusion coefficient will vanish. For the particularly sim-
ple hard sphere fluid, the zero time value of the memory
function can be expressed as three body kinetic theory
collision integrals that can be calculated exactly using the
methods of de Schepper, Ernst, and Cohen [10] and Leeg-
water [11]. Equipped with the initial value of the memory
function and the Enskog friction, one has a theory of the
velocity TCF for a confined particle. Importantly, the re-
sulting simple theory illustrates a behavior in which the
hard sphere behaves as if it were harmonically bound.
Of course, it would be preferable to conduct this analy-
sis on a Lennard-Jones fluid. However, that even hard
spheres show the so-called harmonic mode character in
itself would seem to give further credence to the utility
of the harmonic mode analysis of liquids. In the follow-
ing, we summarize our kinetic theory and compare our
TCF’s with those of Alder, Gass, and Wainwright molec-
ular dynamics (MD) [12] simulations of the hard sphere
fluid.

The velocity TCF,

C(t) = (v-v(®))/(v?), (1)
of a tagged particle in a hard sphere fluid obeys a non-
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fluctuating Langevin-like equation,

(d/dt)C(t) = — FuC(t) + /0 ‘I RE-1C(), (@)

where fg is the Enskog, or uncorrelated collision friction

f5 = —(VliLIv)/(v?), @)
and R(t) is the memory function,
R(t) = (v|iLexp(QiLQt)iQL|v)/(v?), (4)

that accounts for correlated collisions. iL, the hard par-
ticle Liouville operator, consists of a streaming portion,
1Ly (corresponding to free translation), and a collision
term T, so that [13]

iL=iLo+TH =Y v; - v;+3 TP (5)
J i<k

with r; and v; the position and velocity, respectively, of
the jth particle. T} is the binary collision operator for
hard spheres j and k and can be written as

TS5 = lkij - qif | H(Fkij - 943)6(ri; — 0)(bi; — 1), (6)
where

Tij =T; — T4

) (7

kij =1 /Tij-

qij = Vj; —Vj,
Tij = [T,

Here o is the hard sphere diameter; the b;; operator con-
verts the precollisional momenta to postcollisional values
and vice versa; H is the Heaviside unit function; and Q
is the projection operator

Q=1—(m/kpT) Y [Va)(Val, ®)

where « is the Cartesian component of v and m the par-
ticle mass. The diffusion coefficient D can be calculated
from

_ ke [
p=2E /0 dtC(t). )

0031-9007/94/72(11)/1666(4)$06.00

© 1994 The American Physical Society



VOLUME 72, NUMBER 11

PHYSICAL REVIEW LETTERS

14 MARCH 1994

In the Enskog approximation, correlated collisions are
neglected [R(t) = 0] and this leads to a velocity TCF

C(t) = exp(—fEt), (10)
with a friction coefficient following from Eq. (3),
fe = (27/3)vr0°g(0)p, (11)

where v, = 4/y/mmp is the thermal velocity, g(c) the
pair correlation function at a contact separation, and p =
N/V the fluid density.

For very dense fluids, correlated recollisions are respon-
sible for the phenomenon of caging (i.e., trapped trajecto-
ries). In previous extensions of kinetic theory beyond the
Enskog theory, some aspects of caging were included and
these correlations were contained in the memory func-
tion. Typically the incorporation of caging dynamics has
been accomplished by allowing the single particle veloc-
ity to couple to a spatial coordinate mode, be it a Fourier
component of the hydrodynamic particle density in the
Cukier and Mehaffey [14] work or by the coupling to a
pair diffusion mode as in the work of Evans [8]. Here, we
consider an extreme case of short time dynamics and re-
place the memory function R(t) by its value at t =0 [9].
When subject to this approximation, Eq. (2) becomes

(d/dt)C(t) = — feC(t) + R(0) /ot dr C(1) (12)

and this can be written as a harmonic oscillator equation
with damping

(d?/dt?)C(t) + fe(d/dt)C(t) + Q3C(t) =0, (13)

1
(v?)

| we find that

with © = [~R(0)]'/2 the oscillator frequency. Equation
(13) has a solution

e—fit _ f2

c® = = fi—f2

—_— —fat
fi—fe e (14)

where

fum = L0+ VT= 27T, (15)

In this approach, the diffusion coefficient vanishes identi-
cally and this corresponds to complete caging or entrap-
ment. In the following we shall calculate R(0) exactly for
hard sphere fluids.

Progress in the unraveling of the memory function is
hinged on removal of the projection operators from the
time evolution. To do this we use the properties

Qlv) =0,  exp(QiLQt)lv) =|v), (16)
and, after some algebra, R(t) becomes
R(t) = —f% + (v|iLexp(QiLQt)iL|v)/(v?).  (17)

To remove the projection operators from the time evolu-
tion, we write

t
eQiLQt — eiLot + / dt’' eiLot' (QiLQ _ iLO)eQz’LQ(t—t')
0

(18)
and substitute exp(QiLQt) into Eq. (17). After using
Eq. (16) and

efot|v) = |v), (19)

t
R(t) = —f2 — f3t+ —{(v|iLe"L°‘z'L|v) - / dt’ (v|iLe'Lot TeQLRC=)iL|v) + fp(v]iL[ed LR + eiLot’]iL;v)}.
0

(20)

When we replace exp(QiLQt) by exp(iLoT) again, we obtain

¢
R(t) ~ —f& — fit + (v[iLe'lotL|v)/(v?) + / dt'{(v]iLe'Lot Tetlot=t)iL|v) + 2fg(v[iLe'Lo¥iL|v)}/(v?). (21)
0

Because of the §-function singularity of the Liouville operator 7L, one cannot calculate R(0) by simply setting ¢t =0
in Eq. (4) and performing the averages. Rather, one must calculate

R(0) = Jim R(t) = lim (vIiL exp(QILQOIQLIV)/(v?). (22

From Eq. (21), we have

t t
R(0) ~ —f% + {(v|(iL)2|v) +2fp lim / dt'(v]iLe'Lot i L|v) +tlix(r)1+ / dt’ (v|iLe"L°t'Te"L°<t-t’>iL|v>} / (v?).
- 0 - 0

(23)

Owing to the lack of a singularity in (v|iLe!L°t'iL|v), its contribution vanishes in the ¢ — 0% limit. Furthermore,
since repeated binary collision operators involving the same set of particles vanish [T}3 exp(iLot)T12 = 0], then

with

R(O) = —szvj + Rstatic + Rdynamic, (24)

Rygatic = (N = 1)(N — 2(T5v| - Tiav)/(v?), (25)
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¢
Raynamic = 2(N — 1)(N - 2) tgfgl,r/(; dt/(Tl(z-)Vl . 61L°tlT136iL°(t_t’)|T12V)/(U2)~

After some algebra we obtain R, = fgﬁa with a being the static or dynamic component and

- 3 1/2
Ragtaticlg) = 1

Raynamiclg) = % /_ 01 dzz[z(l —a?)sin™! 2 - (1 + x—;) (1 - %2)1/2]9[«7\/2—(1‘—7)}

In writing the above equations, we have used the Kirk-
wood approximation for the three particle distribution
function [15] and we have introduced z (= k12 -f(lg).
From Egs. (24)—(28), we find

Qz/fg =1- Rstatic[g] - Rdynamic[g]
=0.041 — Rstatic[h] - Rdynamic[hL

where h (= g — 1) is the total correlation function. To
complete this calculation, the integration over x must be
done numerically using an accurate pair correlation func-
tion [16]. This completes the reduction of the memory
function in the harmonic model.

In Figs. 1 and 2 we present the hard sphere veloc-
ity TCF’s determined by MD simulations [12] at packing
fractions of p* = (7/6)po® = 0.494 and 0.463, respec-
tively, together with the Enskog and the harmonic model
predictions. There are no fitting parameters in the theo-
retical predictions. At the high density state point, corre-
sponding to a fluid very near solidification, the simulation
and the harmonic model TCF’s have the same crossing
points and minima, although the simulation TCF decays
to zero more rapidly. Since a particle diffuses a distance
of o in a time given by 02/D (in the reduced units this
corresponds to Zt = 1000), then the differences of MD
and the harmonic model TCF after Zt = 5 cannot arise
because of cage escape or appreciable diffusion. Rather,
after Zt = 5 the motion merely becomes anharmonic. In

(29)
(30)

0.20 T T T
0.15 | p*=0.494 §
---: Enskog
0.10 } : Harmonic fluid |
e : MD
Z0.05 | .
0.00 2=
L]
L] . L]
-0.05 | .
-0.10 L L L
5 10 15 20
t*Z

FIG. 1. Hard sphere velocity TCF’s determined by MD
simulations, Enskog theory, and the harmonic model at a
packing fraction p* = 0.494.
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(26)
drz [gz(l - %2) v - (1 + %2> cos™! g]g[a\/M], (27)
(28)

[

the present harmonic approximation, the diffusion coeffi-
cient vanishes identically in contrast with the simulated
fluid.

At the lower density state point, the agreement of MD
with the harmonic model worsens as the decay of the
memory function becomes important and evidence of this
is shown in Fig. 2. Now the assumption of infinitely cor-
related, coherent collision sequences is too extreme: The
hard mode coherent oscillation is too deep and the ve-
locity reversal time [at which C(t) = 0] occurs too soon.
The contrast between Figs. 1 and 2 serves to indicate
when features of the harmonic model are apparent and,
likewise, when the time evolution of R(t) is significant
and harmonic modes misrepresent the importance of co-
herence in hard sphere trajectories.

The frequency term 2 has two sources: (i) First recol-
lision sequences, viz., T12(T13 + T23)T12. Note that the
second, third, and higher recollisions (or repeated ring
sequences) contribute to 2 but these terms can be safely
neglected as shown numerically by Vesely and Evans [17].
(ii) Static correlations, i.e., terms such as T12T33 that
arise as a “penalty” for the use of projected dynamics.
The static term is larger than the dynamic part. The
variation of /fg with packing fraction is illustrated in
Fig. 3. Q/fr has a zero density part and increases with
density to a packing fraction of 0.345 and then decreases.

In a dense fluid, near the freezing transition, Q is

0.20 T T T
0.15 L \ p*=0.463 i
---: Enskog
: Harmonic fluid |
0.10 e . MD
Zo0.05} ]
o
0.00 f.““ FE—
L]
—-0.05 |+ h
-0.10 = : :
0] 5 10 15 20
t*Z

FIG. 2. Hard sphere velocity TCF’s determined by MD
simulations, Enskog theory, and the harmonic model at a
packing fraction p* = 0.463.
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FIG. 3. The variation of 2/fr as a function of packing
fraction p*.

roughly 40% of the Enskog friction. For argon, the Debye
frequency is roughly 1.92 x 10!2 Hz (64 cm™!) as com-
pared to © of 2.6 x 10’2 (88 cm~!). This latter val-
ue was computed using the present harmonic model
for Lennard-Jones potential of argon at its triple point
(T = 84 K, p* = 0.441, and o = 3.405 A [6]). The
present €2 is derived entirely from the collision frequency
and a consequence of this is the ' dependence of . In
the context of the stable and unstable harmonic mode
description of liquids and in particular for dense liquid
argon [2], the stable mode frequency is roughly 2Q and
the unstable mode frequency is roughly the collision fre-
quency, Z = % fE.

The present accomplishments were as follows: First,
a calculation of a harmonic frequency for a hard sphere
solid and second, a demonstration that the predicted ve-
locity TCF of a hard sphere fluid is predicted sensibly in
the near freezing limit using the harmonic representation.
For systems with continuous potentials, the calculation
of a harmonic frequency involves the second derivative of
the potential evaluated at a potential minimum. When
the potential is hard, it is the periodicity of the collision
sequences that is responsible for the harmonic frequency
and these effects are represented in the ¢ = 0 portion of
the memory function. On the basis of the above work, it
appears that kinetic theory models of liquids and the nor-
mal mode descriptions share a common footing provided
that the proper sets of collision sequences are addressed.
Further, for high density fluids, near freezing, there is

strong evidence of the emergence of these normal modes.
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