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When the scaled growth rate of a free-electron laser (FEL) is plotted as a function of the scaled
thermal velocity for the case of ideal beam compression, we find two distinct cases. If the FEL is in the
energy-spread-dominated regime, the growth rate can be improved as a result of compression provided
the scaled thermal velocity is less than unity. Surprisingly, we find that the growth rate is always im-
proved if the FEL is in the emittance-dominated regime.

PACS numbers: 41.60.Cr

Since the gain of a free-electron laser (FEL) increases
with current [1], a number of schemes have been pro-
posed to increase the current from the accelerator by
compressing the beam in the axial direction [2-7]. How-

ever, phase space density conservation implies that the ve-

locity spread in the axial direction must increase, which
tends to reduce the growth rate due to kinetic effects [8].
So the following questions arise. Does beam compression
help? If so, when and by how much? To answer these
questions we characterize the axial component of beam
quality by the scaled thermal velocity,

th, z

Here, p, is the axial velocity of an electron, p&& is the
phase velocity of the fastest growing ponderoinotive
wave, P&~, =—((P, —(P, ) ) ) ' is the root-mean-square
(rms) spread in the axial velocity, ( ) indicates the
mean over the electron distribution, and all the velocities
are normalized to the speed of light in vacuo, c. If the
FEL is in the energy-spread-dominated regime, compres-
sion is useful provided S( I initially; for larger 5,
compression actually reduces the growth rate. Surpris-

ingly, if the beam is in the emittance-dominated regime,
compression always enhances the growth rate. It is

shown here that one can determine a priori the usefulness

of beam compression for a given experiment. Further, it
is sho~n that the scaled thermal velocity provides a useful
measure of the axial component of the FEL beam quality
and a physical interpretation of the results. For the ex-
amples considered, a peak improvement in the growth
rate by a factor -2 is obtained when the current is in-

creased by a factor —10-20. The effect of compression
on the growth rate S, filling factor, and radius of curva-
ture of the radiation wave fronts has been calculated and

displayed graphically for several examples.
The analysis of longitudinal beam compression pro-

ceeds by making two assumptions. First, in an ideal
compression scheme the charge in a micropulse is con-

p, =E/c —(m c /2E)'1+ + [1+(k„y) ]+
m c

served. If 1 is the bunch length and I is the current, this
constraint is expressed as

II =const. (2)

Second, adapting Liouville s theorem to the six-di-
mensional phase space of noninteracting electrons, the in-

variance of normalized emittance implies conservation of
longitudinal phase space:

Ipt|, , =const, (3)

tTr
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where ( )ti on the right hand side indicates the value prior
to compression.

To define the notation used, an outline of the FEL
model follows [9,10]. A matched electron beam-optical
beam system is assumed to propagate along the z axis of
a planar wiggler. The, wiggler vector potential is given

by A =2 cosh(k y)sin(k z)e„, where A„ is the am-

plitude, 2tr/k is the period, and e, is the unit vector
along the x axis. The vector potential of the optically
guided radiation beam is given by A, = —, A, (y)exp[i(kz
—tot)]e„+c.c., where co is the angular frequency, A, (y)
is the amplitude, and k is the complex-valued wave num-

ber which is to be determined. Short-pulse efkcts, such

as spiking, are neglected.
The FEL Hamiltonian function —p, (y,pr;t, —E;z) is

given by

* f exphc(k+k )z —i l+ c.
Ice.
ic

2l

where ptti, is the rms spread in p, . Note that Eq. (3)
embodies what is meant by an ideal compression scheme,
that is, neglecting all other eA'ects that are expected to in-
crease phase space volume. %hen the electron beam is

compressed by a factor a, Eqs. (2) and (3) imply the fol-
1owing transformations in the FEL parameters:

l =a(l )p,

where E= ymc is the energy, —m is the mass, —tet is the charge on an electron, t is the time, (P,pr) are the momenta
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exp[ —(y —yii) /cr„]
F(E,P„J)=nbp

xcrrmc

exp( —J2J/a k metr))xpP,
KKQ~ k ~m CO'b

where yome is the mean energy, a„me is the energy
spread, and nb(y) =nbpexp( —

y /2cr)) is the spatial den-

sity, with peak value nbp and width ob.
The eigenvalue k is obtained by a variational principle

with trial function a, (y) exp( —k,y /2'). Here, k,
=2ypk /(I+a /2) is the wave number corresponding to
the mean electron energy, gR =k, (—2/o, +ik, /R) ' is the
variational parameter, o, is the spot size of the optical
beam, and R is the radius of curvature of the wave fronts.
Rather than k, it is more convenient to consider the
dispersion relation for p, defined by k cp/c —pk, as in-

dicated in Refs. [9] and [10]. The key variables in the
dispersion relation are the unnormalized emittance, c
-kppcr$ and the "transverse current, "

r 12 12/ 2 /

(4)
kppk, Ig I+a2/2

where l~ =1.7x IO ypp, p A is the Alfven current, I is the
current per unit length, and kIip is the betatron wave

number evaluated at yo.
The dispersion relation and the equation obtained by

equating its derivative to zero determine p and gR in

terms of several universal scaled parameters. The scaled
wiggler amplitude is kpp/k D; the real and imaginary
parts of p/D represent the wave-number shift and growth
rate, respectively; the pair crb/cr, and kIOR denote the
filling factor and scaled radius of curvature, respectively;
finally, the scaled emittance is k, b and the scaled energy
spread is o„/ypD. Presenting the results in terms of
universal parameters has the merit of being applicable to
all FELs. Typically in experiments D is small compared
to unity. This is also the regime of validity of the present
analysis.

FIG. 1. Plot of (a) growth rate ratio Imp/(Imp)p, (b) scaled
thermal velocity S, (c) filling factor ob/o„and (d) scaled ra-
dius of curvature kppR, vs current ratio I/(l) pin this case,
scaled emittance k, e 0.01. Prior to compression the electron
beam is characterized by (kpp/k D)p=l, (o„/ypD)p=O. I, and
longitudinal compression leads to a monotonic transition to
warm-beam interaction, as indicated by variation of S. Nega-
tive value of radius of curvature indicates diverging wave fronts
along direction of propagation.

conjugate to the coordinates (x,y), a, =!e!A,/mc,
fs =Jp(g) —Ji(g) is the usual difference of Bessel func-

tions, and (=(a~/2) /(I+a /2). In the betatron phase

space, J=ffdydpi/2x is the action invariant and

kIi =a k/J2y is the betatron wave number.
The equilibrium electron distribution is a function of

the constants of motion:
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To see the effect of beam compression, Fig. 1(a) sho~s
the ratio of the growth rate of the compressed beam to
that of the uncompressed beam, Imp/(lmp)p, as a func-
tion of the ratio of the current in the compressed beam to
that in the uncompressed beam, I/(1)p. Figure l(a)
shows that the maximum increase in the growth rate ratio
is =2 and is obtained at I/(1)p=20, beyond which

Imp/(Imp)p declines due to kinetic effects. Insight into
this behavior is provided in Fig. 1(b) which is a plot of S
vs I/(I)p. Qbserve that the maximum of Imp/ (Imp)p
occurs when S= 1. This corresponds to the spread in the
axial velocity being comparable to the velocity difference
between the beam and the ponderomotive wave. In other
words, the ponderomotive wave is resonant with electrons
in the bulk of the distribution. This is the warm-beam re-
gime of interaction and a further increase in I/(1)p drives
the interaction deeper into the kinetic regime, reducing
Imp/(Imp)p. It should be noted that for every current
ratio the frequency is retuned by adjusting I —ni/ck, in

order to locate the fastest growing ponderomotive wave.
Figure 1(c) shows that the filling factor curve has a

shape similar to the growth rate curve. The similarity is

a consequence of operation in the gain-focusing regime.
In particular, the higher the growth rate the smaller the
radiation spot size cr„and hence the larger the filling fac-
tor. Figure l(d) shows that the radius of curvature too
has a dependence like that of the growth rate curve.

Another example of the effect of beam compression is

shown in Figs. 2(a)-2(d). Figure 2(a) shows that the in-

crease in the growth rate ratio is limited to ~ 1.8, which

is achieved at I/(I)p = 10. In Fig. 2(b) one observes an

initial drop in the scaled thermal velocity, S, towards uni-

ty as the beam is compressed. This example may be un-

derstood by writing the S as

[2(cr„/yp) 2+ [(kpp/k )k, p]2] '/z
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where rl—= —Remi+ (I —ni/ck, ) —(kpp/k )k, e Note that.

in the one-dimensional limit iI is the cold-beam efficiency

and scales as the cube root of the current [I]. The exam-

ple in Fig. 2 displays the interplay between the various

physical effects involved in the axial beam quality. A

beam is said to be in the energy-spread- or in the

emittance-dominated regime according to the relative

magnitude of the terms in the numerator of Eq. (5). The

example in Fig. I lies in the energy-spread-dominated re-

gime. Figure 2, on the other hand, corresponds to the
emittance-dominated regime where S= (kpp/k )k, p/rl.

034 a I i i i l a i i I i l i i i i i i

-0.75

FIG. 2. Plot of (a) growth rate ratio Imp/(Imp)p, (b) scaled
thermal velocity S, (c) filling factor ob/o„and (d) scaled ra-
dius of curvature kppR vs current ratio I/(1)p. In this case,
scaled emittance k, e 0.4. Prior to compression the electron
beam is characterized by (kpp/k D)p-l, (o„/ypD)p=O I, and.
longitudinal compression at first "improves" beam quality be-
fore leading to the warm-beam regime as indicated by variation
of S. Variation of ob/o, and of kppR is indicative of the gain-
focusing eAect.
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FIG. 3. Plot of growth rate ratio, Imp/(Imp)0, versus scaled

thermal velocity prior to compression, (S)0, for (kgb/k D)0 I.
Energy-spread-dominated regime is indicated by solid squares
and emittance-dominated regime is indicated by +'s.

The decrease in S is due to the effect of increased current
on rt, i.e., via the reactive part of the FEL interaction.
An equivalent interpretation is to note that with increased
current the fastest growing ponderomotive wave slows

down and hence (p, —
p~h) in the denominator of Eq. (I)

increases. With the initial decline in S the interaction
transitions towards the cold-beam regime and is therefore
accompanied by the observed increase in Imp/(Imp)o,
even though initially the scaled thermal velocity exceeds
unity. For sufficiently large compression ratios, however,

a„/yoD becomes the dominant term in the numerator of
Eq. (5)—as was the case in Fig. I—and S therefore in-

creases with further compression, leading to the decline in

Imp/(Immit)o. Thus Fig. 2 illustrates an important point.
That is, FEL beam quality is governed not only by the
emittance and energy spread on the beam but also by the

current, through the reactive part of the interaction Fig-.
ure 2(c) shows that the filling factor has a behavior simi-

lar to the growth rate curve. Figure 2(d) shows that the
dependence of the radius of curvature on I/(1)o is similar
to the growth rate curve although the peak is observed to
occur at a larger compression ratio.

A number of examples of beam compression have been
studied. Figure 3, where the peak growth rate ratio is

plotted versus the scaled thermal velocity, summarizes
the results. In the energy-spread-dominated regime,
beam compression enhances the growth rate for (S)o( l.
Beyond (S)o=l compressing the beam causes a reduc-
tion in the growth rate rather than an increase. The situ-
ation is quite different in the emittance-dominated re-
gime. In this regime there is always an increase in the

growth rate ratio, independently of (S)o. Figure 3 corre-
sponds to the case where scaled wiggler amplitude,

(k+k„D)o, is equal to unity. If the beam is sufficiently
cold to begin with, the increase in the growth rate will be
given by usual cold-beam scaling. The results of Fig. 3

apply when the cold-beam limit is not valid.
In summary, the effect of longitudinal beam compres-

sion on the spatial growth rate, scaled thermal velocity,
filling factor, and radius of curvature of radiation wave
fronts has been examined. We have found that (i) as the
beam is longitudinally compressed to increase the cur-
rent, the growth rate peaks and then drops off following
transition into the warm-beam regime; (ii) the increase in
growth rate depends on whether the beam is in the
energy-spread- or the emittance-dominated regime; (iii)
in the emittance-dominated regime compression always
enhances the growth rate, the peak improvement in the
growth rate being on the order of 2 for compression ratio
in the range 10-20 in the examples here; and (iv) in the
energy-spread-dominated regime beam compression
enhances the growth rate provided the scaled thermal ve-
locity is less than unity.

This work was supported by the Office of Naval
Research.

Permanent address: Icarus Research, 7113 Exfair Rd. ,
Bethesda, MD 20814.

[I] C. W. Roberson and P. Sprangle, Phys. Fluids B 1, 3
(1989).

[2] S. Takeda, K. Tsumori, S. Takamuku, T. Okada, K.
Hayashi, and M. Kawanishi, Mem. Inst. Sci. Ind. Res. ,
Osaka Univ. 43, 27 (1986).

[3] B. E. Carlsten, D. W. Feldman, A. H. Lumpkin, J. E. Sol-
lid, W. E. Stein, and R. W. Warren, Nucl. Instrum.
Methods Phys. Res. , Sect. A 272, 247 (1988).

[4] W. E. Stein, W. J. D. Johnson, J. F. Power, and T. J.
Russel, Nucl. Instrum. Methods Phys. Res. , Sect. A 296,
697 (1990).

[5] P. W. van Amersfoort et al. , Nucl. Instrum. Methods
Phys. Res. , Sect. A 304, 163 (1991).

[6] P. Liger, G. A. Krafft, and D. Neuffer, Nucl. Instrum.
Methods Phys. Res. , Sect. A 31$, 290 (1992).

[7] C. Pellegrini et al. , Nucl. Instrum. Methods Phys. Res. ,
Sect. A 331, 223 (1993).

[81 C. W. Roberson, IEEE J. Quantum Electron. 21, 860
(1985).

[9] B. Hafizi and C. W. Roberson, Phys. Rev. Lett. 68, 3539
(1992).

[10] C. W. Roberson and B. Hafizi, Nucl. Instrum. Methods
Phys. Res. , Sect. A 331, 365 (1993).

1657


