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Mean-field electrodynamics, including both a and P effects while accounting for the effects of small-

scale magnetic fields, is derived for incompressible magnetohydrodynamics. The principal result is

a=(ap+ppR. VxR)/(I+R2), p=pp, where ap, pp are conventional kinematic dynamo parameters, the
reduction factor is proportional to the mean magnetic field R =R 't B/(p V ) 't, R is the magnetic Rey-
nolds number, and V is the characteristic turbulent velocity. This result follows from a generalization of
the Zeldovich theorem to three dimensions, exploiting magnetic helicity balance.

PACS numbers: 47.65.+a, 03.50.De, 91.25.Cw

If we decompose magnetic field B into a large-scale field

Bp and a small-scale field b (small-scale field is the part
of the full magnetic field which is zero when averaged
over the ensemble of turbulent fields), we get from (1)

tli Bp =V x E,
E—= (vxb) =aBp —PVxBii,

(2)

(3)

where the dynamo (a effect) is proportional to the fluid

helicity a=an —=—(v Vxv)r, and turbulent magnetic
diffusivity (p effect) is proportional to the fluid energy
p=pp= (v )r. Here, r is —the correlation time of the tur-
bulence. Strictly speaking, we should write expressions
for ap and pp as time integrals, but this symbolic notation
is more clear and compact. The kinematic dynamo equa-
tions (2) and (3) predict an exponential growth of mag-

Helical motions of electrically conducting fluids gen-
erate magnetic fields. Examples include magnetic fields

of the Earth, the Sun and stars, galactic [1,2] and accre-
tion disk's fields [3], etc. The simplest theoretical para-
digm for these fields is the kinematic dynamo theory [1].
The kinematic dynamo theory treats magnetic fields as

passive —the magnetic field is distorted by the fluid

motion, but the fluid itself does not feel the presence or
tension of the magnetic field. In this approximation the

problem of magnetic dynamo admits a convenient solu-

tion, what is called a kinematic dynamo theory [Eqs. (2)
and (3) below]. The problem is, however, that being
linear this theory fails to predict the strengths of generat-
ed fields. Below we derive a quasilinear version of the ki-

nematic dynamo [quasilinear dynamo (QD)] which in-

cludes saturation effects associated with small-scale mag-
netic fields. In QD the small-scale magnetic fields (which
are much stronger than the large-scale fields) modify the
fluid motion in such a way as to reduce the a effect. This
theory is capable of predicting magnitudes as well as spa-
tiotemporal structure of the generated fields.

Conventional kinematic dynamo theory [1] studies
diffusion and self-amplification of a passive vector field 8
in a given turbulent field v:

t), 8 =Vx (v x 8) .

netic fields. It was always clear that when the magnetic
field Bp is amplified to the values comparable to the
characteristic fluid turbulent velocity V (we set 4trp=1)
kinematic dynamo theory is invalid, and one should take
into account backreactions of the magnetic field on the
turbulent velocity field, thus leading to saturation of the

generated magnetic fields. Recently Cattaneo and

Vainshtein [4] pointed out that the above naive estimate
for the applicability of conventional theory Bo( V is in-

correct. The physical reason for that is the following.
The Zeldovich estimate [5] for the small-scale field ener-

gy (in two dimensions) is (b )-R Bp, where R» I is

the magnetic Reynolds number. This estimate is valid in

two dimensions and follows from conservation of the

squared magnetic potential in dissipationless magnetohy-
drodynamics (MHD). Thus before the large-scale field

energy becomes comparable to the kinetic energy of tur-

bulence, we reach the state with the small-scale field in

energetic equipartition with turbulence. We may suppose
that conventional kinematic dynamo theory is applicable
when (b ) & V, that is, only for extremely small values

of the large-scale fields Bp&R 'l V. Note, however,

that the Zeldovich theorem is applicable only in two di-

mensions, thus explaining why Cattaneo and Vainshtein
were able to calculate magnetic diffusivity suppression

only for two dimensions. We show below that the esti-
mate Bp & R '/2V for applicability of the kinematic
dynamo theory is also valid in the three dimensional
MHD. However, the dynamics when Bp reaches values

close to or greater than R~ ' V are more complicated in

three dimensions than in two.
The kinematic dynamo equation (3), being just a Tay-

lor expansion in k space, remains valid. However, the
dynamo process is modified in a rather complicated
fashion,

a=(ap+PpR. VxR)/(1+R ), (4)

where the reduction factor R is just the large-scale field B
measured in the units of (pV /R )'/. Magnetic dif-
fusivity survives in its kinematic form p=pp. Equations
(3) and (4) constitute what we call quasilinear dynamo
(QD). The structure of (2)-(4) is somewhat reminiscent
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of the result of [6], where Kraichnan considered the
effects of a fluctuating c. In QD generated magnetic
fields saturate due to the a-effect suppression. Below we

briefly describe some critical points in the derivation of
the QD equations

We first note that Eqs. (2) and (3) remain valid for ar-
bitrary values of the large-scale field 80. However, now
we are able to calculate the average E using both (I ) and
the fluid equation describing backreactions:

tl, v (8 V)b+ (bV)Bp —Vp, (5)

where V v O. Now we should calculate the average
electric field E using

E (vx Ch8, b)
—(bx dr 8,v) . (6)

&1 Vxb) —(a/rl)8$ —(p/ii)Bp. Vx Bp (9)

We finally plug (9) into (7) to get the QD equation (4).
Equation (9) is the topologically motivated, exact expres-
sion for &1 Vxb). Since this is a central point of the QD
theory, we wish to give an alternative derivation for the
average (9). Namely, we simply note that magnetic heli-

city dissipation is due to molecular diffusivity only, so
that

The last term in (6) is quadratic in 1 and contains a part
which is linear in Bp (giving a quasilinear correction to
a) and a part which is linear in VxBp (giving a correc-
tion to P). Thus, it turns out that one can obtain the
correct result for the a effect rewriting (5) as if Bp were a
constant vector, i.e., tl, v (BpV)b. We then get

a —r(&v Vxv) —&b Vxb)) .

This last formula was first obtained in [7]. Note that it
sensibly predicts that the a effect is reduced by the aver-

age &1 Vxb) (which is related to but is not magnetic hel-

icity), and a is zero in a "pure Elsasser" or Alfven wave

state v ~ b.
Now we should calculate the average (1 Vxb). This

can be done exactly. The reason why is the existence of
the magnetic helicity integral of motion for ideal MHD.
The following procedure, based on helicity balance, is in

fact a three dimensional analog of the original Zeldovich
theorem [5]. We just write the equation for the small-
scale field in a certain gauge in terms of vector potential
Sf

8,a v x Bp+ v x 1—
&v x 1)—rlV x1,

where rl is the "molecular" magnetic diffusivity due to
finite conductivity. Multiplying Eq. (S) by b and taking
the average gives &b vxBp) rl&b Vxb). The term on

the left hand side (lhs) of the last equation is calculated
using the definition of the average field E:

&1 vxBp) —Bp &vxb) —Bp E,
and then (3) gives

8,&A 8)= —2q&8 VxB). (io)

The lhs of (IO) can be calculated with A, B replaced by
the large-scale fields A0, 80, while the rhs can be calculat-
ed with B replaced by the small-scale field b. Equation
(IO) then becomes

P- r [&i')+ (2 —6/d)&b')] (i 2)

Thus we see that for d 2 we get P-effect suppression [2],
while for d 3 the P effect is not modified by backre-
actions. We do not need to know the small-scale field en-

ergy &b ) in three dimensions. The cross helicity correla-
tor &v b) is also irrelevant for the QD derivation.

To summarize, the large-scale magnetic field in a heli-
cal small-scale turbulent field of electrically conducting
fluid is described by the quasilinear dynamo equations

rI, B=Vx (aB —PpVx 8),

a (ap+PpB VxB)/(I+8 ),

(i 3)

(i4)

where 8 is in Zeldovich units (pV /R~)'/. The model
can predict not only the frequencies and length scales of
the generated fields but also their saturation levels. The
actual saturation level of the generated field Bdepends on
the geometry of the problem, and is equal to a geometri-
cal factor times the "Zeldovich" unit magnetic field
(pv2/R ) I/2
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ti, &Ap Bp) = —2r/&b Vxb).

Now we use (3) to calculate the Ihs of (1 I) and we again
obtain (9).

It remains to prove that the P effect is not renormalized
in three dimensions. It turns out to be a more complicat-
ed task than to calculate the renormalized a. The techni-
cal problem is the presence of the term Vp in Eq. (5). It
was possible to omit this term in the course of a calcula-
tion, but it should be kept for the P calculation. We are
thus forced to use the spatial Fourier transformation.
Note also that P is unrenormalized only in exactly three
dimensions. To point out this d dependence and to show
that p pp is just a consequence of three dimensionality
we calculate the quasilinear P in d dimensions. The basic
line of this calculation is straightforward —write Eqs. (5)
and (6) in spatial Fourier components and do the average
(6). Since the calculation involves too much algebra, we

simply give the result and leave the details for the extend-
ed version of the present paper. The renormalized tur-
bulent magnetic difl'usivity in d dimensions is given by the
following analog of (7):
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