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Do Globally Coupled Maps Really Violate the Law of Large Numbers?
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Coherent behavior in ensembles of globally coupled maps is investigated in the limit of infinite number
of elements. A self-consistent approach based on a nonlinear Frobenius-Perron equation is proposed for
such systems, and a possibility of quasiperiodic and chaotic behavior of the mean field is demonstrated.
For the study of finite ensembles a noisy nonlinear Frobenius-Perron equation is derived. Previous obser-
vations of violations of the law of large numbers are explained.
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Globally coupled nonlinear oscillators are intensively
investigated now. Such systems arise naturally in studies
of Josephson junction arrays [1], multimode lasers [2],
charge-density waves [3], and oscillatory neuronal sys-

tems [4]. Also, some unusual properties, such as cluster-
ing [5], splay states [6,7], and collective chaotic behavior
[5,8-10],were predicted for these systems theoretically.

Several basic models of coupled oscillators were pro-
posed. The behavior of coupled Josephson junctions and
limit-cycle oscillators may be described by coupled ordi-

nary differential equations [5,6]. For noisy bistable oscil-
lations a description based on the Fokker-Planck equation
was proposed in [11]. In the case when individual oscilla-
tors are chaotic, a model of globally coupled maps can be
used [12,13]. In particular, Fabiny and Wiesenfeld
showed [14] that such a model describes adequately cou-

pled electrical circuits comprised of p njunct-ions.
Recent studies of globally coupled maps have revealed

some rather surprising results; e.g. , in Refs. [15,16] it was

shown that globally coupled maps violate in some cases
the law of large numbers, due probably to nontrivial

coherent behavior. In this paper we use a statistical ap-

proach analogous to that applied previously to coupled
noisy oscillators [11] to study the collective behavior in

large ensembles of globally coupled maps. In the limit

when the number of the elements N tends to infinity, we

describe the system self-consistently with a nonlinear
Frobenius-Perron equation, which is considered then as a
nonlinear dynamical system with an infinite number of
degrees of freedom. The behavior of the system depends
on a coupling constant and exhibits a transition to chaos
via quasiperiodicity. For finite N the mean field obeys
additional random fluctuations; in this case the system
can be described by a noisy nonlinear Frobenius-Perron
equation.

Let us consider an ensemble of N identical discrete-
time nonlinear oscillators,

x'+ =f(x,t",a), i=1, . . . , N,
depending on a parameter a. %e suppose that these os-
cillators are coupled through the mean field s defined as

where e is the coupling constant and a is a parameter
value of uncoupled maps.

The ensemble governed by Eq. (1) can be character-
ized by its probability distribution density W, (x), whose

evolution obeys the Frobenius-Perron equation [17]

WI+ ~(x) =„dyB(x —f(y, a)) 8', (y) . (4)

If we take into account that according to (3) the Fro-
benius-Perron operator depends on W„we obtain the
nonlinear equation

W, + ~ (x) =
~ dy b(x f(y, a,—) )W, (y),

a, =a +as, ,

s&
= xW;(x)dx, (7)

which we call the nonlinear Frobenius-Perron equation
(NFPE). It is completely analogous to the nonlinear
Fokker-Planck equation derived in [11] for ensembles of
coupled noisy continuous-time oscillators. [Note that for
generalization of the system (5)-(7) to the case of noisy

discrete oscillators one has only to modify the kernel in

the Frobenius-Perron operator (5).]
Let us start with looking for the stationary solutions of

Eqs. (5)-(7) meaning that s, =s does not depend on r

Then, if the map f(x,a) is mixing, Eq. (4) with constant
a describes an evolution to a unique stationary distribu-
tion that depends on the parameter a:

lim W, (x) =W (x,a) .(~ oo

Hence, the mean field also depends on a,

s =
J xW (x,a)dx= F(a), —

and from Eq. (6) we get an equation for a,

We assume that the coupling comes in (1) through a

dependence of the parameter a on s, :

ar =a +~r

a =aa+eF(a) . (10)

If F(a) is a bounded continuous function, Eq. (10) has at
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least one solution that tends to a for s 0 (uncoupled
oscillators). However, in many widely discussed systems
like logistic map f(x,a) =a —x, the function F(a) is
discontinuous (due to the fact that periodic windows are
everywhere dense on the parameter intervao and a sta-
tionary solution may not exist for some values of a and e
[18]. In the case of the logistic map there is also another
difficulty: Because of the existence of periodic windows

and bands the map is not mixing. If the parameter a is

chosen within a periodic window, Eq. (8) is no more valid

and the Frobenius-Perron equation (4) has a continuous
set of periodic invariant solutions. Indeed, if x ~,

x2, . . . , x is a stable cycle, then W(x) PP- ~ x;
xb(x —x;) is a periodic solution of Eq. (4) for any set

x~, . . . , x satisfying the normalization x&+
+ a. =1. These periodic solutions may be responsible for
a nonstatistical behavior numerically observed in ensem-
bles of coupled logistic maps in [15,16,18]. If, however, a
small noise is added to the logistic map, Eq. (4) has a
unique invariant solution like for the mixing mappings.
Then a stationary solution of Eq. (10) exists at least for
small enough a For large a this solution may become un-

stable and a more complicated behavior is observed.
As a concrete example for nontrivial collective behavior

let us consider a tent map

f(x,a) -a(1 —lx I) —
1 .

This map is mixing for J2 (a & 2 and in the calculations
presented below a& is always in this interval. Direct nu-

merical simulation of the system (5)-(7) was performed
with a finite-difference scheme with 4000 nodes in the in-

terval [—1, 1]; the evolution of a randomly chosen initial

density was followed. After transients were over, we ana-

lyzed the sequence {s,]. Typically, with an increase of the
coupling constant e (which may be either positive or neg-

ative) a complex sequence of bifurcations is observed.
Referring for a detailed bifurcation diagram to [19], we

present here the two most interesting examples. For
a0=1.9, s= —0.74 the attractor generated appears to be
quasiperiodic [see Fig. 1(a); the largest Lyapunov ex-

ponent is nearly zero in this case]. For au=1.9, a= —
1 a

chaotic attractor is observed with at least one positive

Lyapunov exponent [see Fig. 1(b)].
The NFPE describes the evolution of the ensemble in

the limit N ~. For finite N we still can use Eqs. (5)
and (6), but with Eq. (2) instead of (7). If we assume

that the law of large numbers is valid for our system, then

we can rewrite Eq. (2) as

D t/2
t

St Xt +
i/2 4t (12)

where x, =fx8, (x)dx; D, =f (x —x, ) W, (x)d xand (,
are Gaussian random variables with zero mean and unit

variance. The system (5), (6), and (12) is in fact a

noise driven -nonlinear evolution equation. One can ex-

pect that for a small noise amplitude (large ensemble size

iV) the regimes observed in a noise-free system (5)-(7)
are only slightly modified. The results of direct numeri-

cal simulation of system (1) and (2) confirm this; see Fig.
2.

Note that here we use the law of large numbers in a
more precise sense than the authors of [15,16]. Indeed,
the law of large numbers can be applied to an ensemble

of equally distributed random variables. Thus, if the dis-

tribution function depends explicitly on time, averages
over time and ensemble are not equivalent [20]. While
the variance V of the fluctuations of the mean field aver-

aged over the ensemble is proportional to 1Y ', the time-

averaged variance saturates for large N at the value
V =((s, —(s, )) ), where s, obeys the noiseless system
(5)-(7). Only if the NFPE has a stable fixed point solu-

tion, one has V 0 and both methods of averaging are
equivalent. This explains why, using the time averaging
in Refs. [15,16], violations of the law of large numbers

were observed.
The proper procedure to confirm the law of large num-

bers for the fluctuations of the mean field (2) is the fol-

lowing. The observed time sequence s& must be con-
sidered as an output of a noisy dynamical process,
governed by a system (5), (6), and (12). Therefore one
has to apply to this time series one of the methods of
noise estimation in dynamical systems [21,22]. These
methods include embedding in a phase space, and for
complex regimes such as shown in Figs. I and 2 are rath-
er computer time consuming. So we applied a simple
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.2 StFIG. 1. Two-dimensional plot of successive iterations of the
NFPE (5)-(7), (I I). (a) s —0.74, quasiperiodic regime; (b)—1, chaotic regime.

FIG. 2. Direct simulations of an ensemble of N =10 oscilla-
tors (I) and (2) for the same parameters as in Fig. l.
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FIG. 3. Estimations of the effective noise for the fluctuations
of the mean field in the models (I) and (2) for coupled tent

maps with e= —0.44. Circles, time averaging; squares, dynam-
ical noise estimation. Dashed line, variance V of period-two

cycle obtained from the NFPE (5)-(7). Solid line has slope
—l

method [23] of noise intensity estimation to the case
s= —0.44 when a period-two cycle in the NFPE is ob-
served. [Having a time series from (I) and (2), we took
all points s, falling in a small interval (typically of width

10 4) and estimated noise intensity from the spreading
of their images s, + ~. After averaging over diff'erent inter-
vals we got the value for the noise variance. ] Figure 3

shows that while methods of Refs. [15,16] saturate for
N ~ at the predicted value V, the dynamical noise
estimation method gives N ' dependence of noise vari-

ance, in accordance with the law of large numbers. Note
that recently reported violation of the law of large num-

bers in an ensemble of uncoupled oscillators governed by
the same noise [24] was explained in Refs. [20,25,26]
with essentially the same arguments as above.

In conclusion, using the self-consistent approach based
on the nonlinear Frobenius-Perron equation we have

shown that ensembles of globally coupled nonlinear
discrete-time oscillators may exhibit quasiperiodic and

chaotic coherent collective behavior. We have considered

only mean-field coupling, but our approach can be easily
generalized to any global coupling. We have also shown

that the law of large numbers is valid for systems with

mixing chaotic attractors, if implemented properly. It
seems suggestive to apply this approach to local coupling
in high-dimensional lattices of nonlinear oscillators and

cellular automata, where quasiperiodic collective behavior
has been observed recently [27-29].

We thank N. Brilliantov and A. Politi for useful dis-

[I] P. Hadley, M. R. Beasley, and K. Wiesenfeld, Phys. Rev.
B 3$, 8712 (1988).

[2] K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy,
Phys. Rev. Lett. 65, 1749 (1990).

[3] S. H. Strogatz, C. M. Marcus, R. M. Westervelt, and R.
E. Mirolio, Physica (Amsterdam) 36D, 23 (1989).

[4l H. Sompolinsky, D. Golomb, and D. Kleinfeld, Phys. Rev.
A 43, 6990 (1991).

[5] D. Golomb, D. Hansel, B. Shraiman, and H. Sompolin-

sky, Phys. Rev. A 45, 3516 (1992).
[6] S. Nichols and K. Wiesenfeld, Phys. Rev. A 45, 8430

(1992).
[7] S. H. Strogatz and R. E. Mirollo, Phys. Rev. E 47, 220

(1993).
[8] P. C. Matthews and S. H. Strogatz, Phys. Rev. Lett. 65,

1701 (1990).
[9] V. Hakim and W.-J. Rappel, Phys. Rev. A 46, R7347

(1992).
[10] N. Nakagawa and Y. Kuramoto, Prog. Theor. Phys. $9,

313 (1993).
[I I] R. C. Desai and R. Zwanzig, J. Stat. Phys. 19, I (1978).
[12] K. Kaneko, Phys. Rev. Lett. 63, 219 (1989).
[13] K. Kaneko, Physica (Amsterdam) 41D, 137 (1990).
[14] L. Fabiny and K. Wiesenfeld, Phys. Rev. A 43, 2640

(1991).
[15] K. Kaneko, Phys. Rev. Lett. 65, 1391 (1990).
[16] G. Perez, S. Sinha, and H. Cerdeira, Phys. Rev. A 45,

5469 (1992).
[17] A. Lasota and M. C. Mackay, Probabilistic Properties of

Deterministic Systems (Cambridge Univ. Press, Cam-

bridge, 1985).
[18] K. Kaneko, Physica (Amsterdam) 55D, 368 (1992).
[19] A. S. Pikovsky and J. Kurths (to be published).
[20] A. S. Pikovsky, Phys. Rev. Lett. 71, 653 (1993).
[21] A. Ben-Mizrachi, I. Procaccia, and P. Grassberger, Phys.

Rev. A 29, 975 (1984).
[221 P. Grassberger, T. Schreiber, and C. Schaffrath, Int. J.

Bifurcation Chaos 1, 521 (1991).
[23] R. Wayland, D. Bromley, D. Pickett, and A. Passamante,

Phys. Rev. Lett. 70, 580 (1993).
[24] S. Sinha, Phys. Rev. Lett. 69, 3306 (1992).
[25] M. Ding and L. T. Wille, Phys. Rev. E 4$, R1605 (1993).
[26] M. Griniasty and V. Hakim, Phys. Rev. E (to be pub-

lished).
[27] H. Chate and P. Manneville, Europhys. Lett. 14, 409

(1991).
[28] B. Barral, H. Chate, and P. Manneville, Phys. Lett. A

163, 279 (1992).
[29l J. A. C. Gallas, P. Grassberger, H. J. Herremann, and P.

Ueberholz, Physica (Amsterdam) 1$0D, 19 (1992).

1646






