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Euclidean Symmetry and the Dynamics of Rotating Spiral Waves
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It ls shown that the dynamics of spiral waves in excitable media are organized around a
codimension-two point where a Hopf bifurcation from rotating waves interacts with Euclidean sym-

metry. A simple ordinary-di8'erential-equation model of this bifurcation generates dynamics like the
"meandering" of spiral waves.
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Many nonlinear systems in the laboratory and in na-
ture possess symmetries which markedly influence their
dynamics. By incorporating symmetry groups into bifur-
cation theory, it has been possible to understand precisely
how symmetry interacts with dynamics in such nonlinear
systems [1]. Despite its successes, symmetric bifurcation
theory is not, at present, developed sufficiently to ex-

plain the complex, so-called "meandering, " dynamics of
spiral waves in excitable media [2—14]. The reason, as we

shall show, is that the group dictating spiral dynamics is

the Euclidean group, E2, of distance-preserving transfor-
mations of the plane (rotations, reflections, and transla-
tions), and this noncompact group does not fit into the
existing theoretical framework.

In this Letter we present a detailed bifurcation anal-

ysis of spiral waves in excitable media. Based on this
analysis, we propose a simple low-order system of differ-

ential equations to describe spiral dynamics. Specifically,
we present a model for the Hopf bifurcation from rotat-
ing waves in systems having Euclidean symmetry. The
model reproduces the wealth of behavior exhibited by
meandering spirals in experiments [3,5,8,9,14] and sim-

ulations [4—7,11]. While our starting point and focus is

spiral waves in reaction-diffusion systems, the theory pre-
sented is entirely general and applicable to all systems of
rotating waves in the plane.

We begin by describing the dynamics typical of a sin-

gle, isolated spiral wave in an excitable medium. Results
have been obtained from a detailed numerical study of
the reaction-diffusion equations:

u+e u(1 —u) u—,—= u —v (1)
v+ b clv
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trated with segments of the path taken by the tip of the
spiral as it evolves in time. We use the tip definition in

Ref. [6]. For completeness, the region with no spiral so-

lutions to Eqs. (1) is shown, but it will not be considered
here.

Rotating waves (RW) are rigidly rotating periodic
states that are seen as steady in a frame rotating at the
spiral frequency a~. Their tip paths form circles. We

compute RW solutions by solving a nonlinear eigenvalue

problem for the u and v fields, and the frequency ai,
and then we determine their stability by computing the
leading eigenvalues of the associated linear stability op-
erator [12]. The RW states become unstable via a Hopf
bifurcation when a complex-conjugate pair of eigenvalues
crosses the imaginary axis. This bifurcation introduces a
second frequency, u2, into the dynamics and gives rise to
modulated waves.
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where a, b, and t are parameters with e (( 1. The v field
is taken to be diffusionless, although this is not essential.
Equations (1) and numerical methods used to solve them
have been described elsewhere [6,10,12,15].

Figure 1 shows a two-parameter phase diagram for the
spiral dynamics of Eqs. (1) with e = 2 x 10 2. Qualita-
tively similar diagrams are found ubiquitously in surveys

of spiral dynamics [4,11,14], and in this sense, Fig. 1 por-
trays the generic behavior of spiral waves in excitable
media. The dynamics in the various regions are illus-

FIG. 1. Phase diagram for spiral-wave dynamics. Shown

are regions containing: (N) no spiral waves, (RW) stable ro-

tating waves, and (MRW) modulated rotating waves. Spiral
tip paths illustrate states at 6 points. Small portions of spiral
waves (u = 1/2 contours) are shown for the two RW cases.
The MRW tip paths are not closed curves. A locus of su-

percritical Hopf bifurcations separates the RW and MR%' re-

gions. A curve (dashed) of modulated traveling waves (MTW)
emerges from the resonant point, ~q ——~2, on the Hopf lo-

cus, and separates MRW states with inward petals (left) and

outward petals (right).

164 0031-9007/93/72 (1)/164(4)$06.00

1993 The American Physical Society



VOLUME 72, NUMBER 1 PH-.YSICAL REVIEW LETTERS 3 JANUARY 1994

Modulated rotating waves (MRW) are quasiperiodic
states that are seen as periodic in a uniformly rotat-
ing frame [1,6,16]. In the context of excitable media,
these states are referred to as meandering [3] or as com-
pound rotations [9]. We compute MRW states by time-
dependent simulations [6,10]. Their tip paths form "flow-
ers" of two distinct types: those with inward petals,
which bifurcate with uz & cui, and those with outward
petals, which bifurcate with ~2 & uq. The Hopf locus in
Fig. 1 is a smooth curve obtained directly from stability
computations. It is everywhere supercritical and flowers
grow continuously from circles. (See, e.g. , Refs. [5—7,9].)

Emerging from Hopf locus at the point of resonance
between the two spiral frequencies, ~i ——~z, is a locus of
modulated traveling waves (MTW). These states are pe-
riodic in a uniformly trurislatiny reference frame [17].We
obtain them by time-dependent simulations in a domain
sufficiently large that waves travel significant distances
before boundary efFects become important. The transla-
tion speed increases continuously from zero with distance
from the resonant point. (Compare the two MTW states
in Fig. 1.) The translation direction is determined by ini-
tial conditions. The MTW curve separates the two flower

types within the MRW region. Flower sizes (specifically
their secondary radii [5,6,9,11]) diverge as the parame-
ter distance from the MTW locus goes to zero, and the
MTW states a;e the limit of either flower type as the
flower size diverges.

The resonant Hopf bifurcation is the organizing cen-

ter for the dynamics in Fig. 1. Arbitrarily close to this
codimension-two point there are rotating waves, modu-
lated rotating waves with flowers of both types, and mod-
ulated traveling waves. This bifurcation is thus the key
to understanding the variety of spiral behavior in Fig. 1.

At linear order, the codimension-two point can be un-

derstood from a numerical linear stability analysis of RW
solutions. Reference [12] is devoted entirely to this sub-
ject. Figure 2(a) shows a RW state at a typical point
on the Hopf locus. Its five leading eigenmodes are shown
in Figs. 2(b)—2(f) and the corresponding eigenvalue spec-
trum [18] is illustrated in Fig. 2(g). All other eigenvalues
have a negative real part and play no active role in the
dynamics. For simplicity, we shall omit reference to the
v fields corresponding to Figs. 2(a)—2(f).

Consider first the complex pair of eigenvalues asso-
ciated with the Hopf bifurcation [squares in Fig. 2(g)].
These eigenvalues are on the imaginary axis only at the
Hopf bifurcation; generically they cross the axis trans-
versely as a function of +he parameters a and 5, and
give rise to modulated waves, i.e., the "meandering in-

stability. " The associated complex eigenmode is shown
in Figs. 2(b) and 2(c), and is discussed in detail in Ref.
[12].

The other eigenvalues (crosses) in Fig. 2(g) result from
symmetries and are always on the imaginary axis. The
eigenvalue at zero is associated with rotational symme-
try. The corresponding eigenmode is shown in Fig. 2(d).
This mode has been obtained directly from a numerical
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FIG. 2. Linear stability results. (s) Rotating wave (u-field) on the Hopf locus in Fig. 1: a = 0.760 snd b = 0.05. The domain
hss radius R = 18. Blue, black, snd red denote u & 0.1, 0.1 & u & 0.9, snd u ) 0.9, respectively. (b)—(f) Leading eigenmodes
of (s). The color scale is such that zero values are black snd the maximum (minimum) values of each field sre white (yellow).
(b) snd (c) sre the real snd imaginary parts of the Hopf eigenmode. (d) is the eigenmode resulting from rotational symmetry
(e) and (f) are the real snd imaginary parts of the eigenmode associated with translational symmetry. (g) snd (h) illustrate
eigenvalue spectra on the right snd left branches, respectively, of the Hopf locus in Fig. 1. Squares (crosses) denote Hopf
(symmetry) eigenvslues.



VOLUME 72, NUMBER 1 P H YSICAL REVI E% LETTERS 3 JANUARY 1994

eigenvalue computation, but its form is precisely that for
the rotational mode: uR = Bsu, where u~ is the eigen-
mode, u is the RW in Fig. 2(a), and 8 is the polar angle.

The complex symmetry eigenvalues in spectrum 2(g),
and corresponding complex eigenmode in Figs. 2(e) and
2(f) are associated with translational symmetry. While
our 6nite computational domain is not translationally
invariant, we find eigenvalues and eigenmodes which
are virtually indistinguishable from those resulting from
translational symmetry. It can be verified [12] that in
an infinite, homogeneous system, a spiral rotating at
frequency ~i has translational eigenmodes of the form
uT = 8 u + i8„u,with eigenvalues AT = +kui. Except
extremely close to the domain boundary, the eigenmode
in Figs. 2(e) and 2(f) is of this form. The associated
eigenvalues, A, are indistinguishable from +iui.. extrap-
olation from domains with small radii shows that at ra-
dius R = 18 (as in Fig. 2), [Re(A)l ( 10 4s. Hence,
these eigenvalues can be considered to lie on the imagi-
nary axis, and therefore the relevant symmetry group for
the spiral stability problem is the Euclidean group Ez of
rotations, refiections, and translations.

Everywhere on the Hopf locus in Fig. 1, except at the
codimension-two point, the five eigenvalues on the imag-
inary axis are distinct. Apart from the ordering of eigen-
values, there are no qualitative differences between the
spectra on the right branch, ui ( ~z, and those on the
left branch, ui ) uz, of the Hopf locus [Figs. 2(g) and
2(h)]. At the codimension-two point where ~i = vz, the
Hopf and translational eigenmodes of the RW state co-
incide. (Note the similarity between these eigenmodes in
Fig. 2.) At this point, the stability operator has eigen-
values kicoi each with multiplicity two, plus a zero eigen-
value. This specifies completely the bifurcation to linear
order.

We now seek to unfold the resonant Hopf bifurcation,
that is to understand in the simplest terms possible the
nonlinear dynamics which typically exist in the vicinity
of such a codimension-two point. However, the bifurca-
tion involves the interaction of Hopf and translational
eigenmodes of a rotating wave, and the relevant symme-
try group for this problem is Ez. At present, there is
no Euclidean-equivariant bifurcation theory from which
to obtain a normal form in this case. Therefore, we pro-
pose a low-dimensional, weakly nonlinear model which

(i) is equivariant under a particular action of Ez, and
which (ii) has a Hopf bifurcation from rotating wave so-
lutions. With this model we can gain insight into the
codimension-two bifurcation without the complications
associated with a partial differential equation system.
We leave for the future a rigorous derivation of a low-
dimensional model. The model we propose is

7=V~
U = v f(lulz, ipz)+imp h([viz, ip ), (2)

~ = ~.g(l~l' ~')
where the "position" p and the "velocity" v are complex,
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and ip is real and proportional to frequency. We specify
the real-valued functions f, g, and h below. The model is
of real dimension five because the codimension-two point
has a five-dimensional center eigenspace.

For any choice of f, g, and h, Eqs. (2) are invariant
under the following action of E2.

(~& I'"'~f (~) (~' )
R~ v ' = e'~v, z v = v*

'N tU tU —tD

(P ) (P+Q+iP)
T~p v v

where * denotes complex conjugation. Q is rotation by
angle p, K is refiection, and T p is translation by Q+ ip.

Letting p = x+ iy and u = se'&, with "speed" s ) 0.,
Eqs. (2) become

i = scosg, y = ssing, P = io h(sz, io2),

s = s f(s2, ip2), io = ip g(s2, ipse).

We consider the following expansions for f, g, and h:

f(s, io ) = Clp + Qis + QZtp —S

g(s, ip ) = —1+Pis (4

h(s, w ) = pp.

Taking into account possible rescalings of e, io, and time,
three coefficients have been set to unit magnitude.

The (s, io) subsystem deeouples in Eqs. (3), and P(t),
x(t), and y(t) can be found by quadrature once s(t) and
u'(t) are known. Rotating waves in the model correspond
tononzerosi and ioi for which f(si, ipi) = g(si, ipi) = 0,
i.e., steady states in the (s, io) subsystem. It follows that
P(t) = ~it, whereui = ppioi and/(0) = 0. The position,
p = @+ay, traces out a circle with frequency ~i.

The bifurcation from rotating to modulated waves in
the model is simply a Hopf bifurcation in the (s, ip) sub-
system. We take Qz and pp to be bifurcation param-
eters and fix the other coefficients in (4):
ni —— s, Pi = 1. Then a simple calculation shows
that a Hopf bifurcation occurs at Qz = —5 from the ro-
tating wave (si, ioi) = (&, &). The primary frequency

is uq ——pptui = pp/v2, and the Hopf frequency is

u2 = v14. Hence a resonance Hopf bifurcation occurs
for nz = —5, pp = ~28. A straightforward calculation
shows that at this point the model indeed has the same
eigenvalue structure as the codimension-two point in the
reaction-diffusion equations.

Figure 3 shows a phase diagram for the model in terms
of normalized bifurcation parameters: p—:—(a.q + 5)/5
and v—:pp/v 28. The Hopf locus is given by p = 0 with
v determining the frequency ratio at the bifurcation. For

p ) 0 there are modulated waves of various types, il-

lustrated with plots of p(t). These bear a striking re-
semblance to the tip paths of meandering spiral waves in
excitable media. See not only Fig. 1, but also plots in
Refs. [3—6,8—11,14]. Elsewhere [19], it will be shown that
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FIG. 3. Phase diagram for the model equations. Numeri-

cally obtained plots of p = x+iy over short time intervals are
shown centered on corresponding parameter points. The inset
shows the three lowest-order resonant bifurcations. Dashed
curves show loci of MTW states.

the model reproduces qualitatively all the phenomena in
the generic phase diagram for spiral waves, e.g. , Fig. 1.

From the model it is possible to extract the scaling laws
near resonant bifurcations. We proceed heuristically; a
complete treatment gives the same results. Just past the
Hopf bifurcation, s(t) and m(t) are of the form (modulo
transformations and rescalings):

s(t) = sy + ~psln(ld2t), lD(t) = 10y + ~p, cos(Ldzt).

From these, P in Eqs. (3) can be integrated to give P(t).
Substituting this and s(t) into the equations for i and y
in Eqs. (3), one obtains to lowest order in p

x sy cos(4l&t) + Is I cos(tdyt) sin(cu2t)

p'~ sin(cugt) sin(~at),
4)g

and similarly for y. The dependence of sq, tdq, and uz on
y, is unimportant here.

The behavior of p(t) = z(t) + iy(t) near a resonant
Hopf bifurcation follows immediately. When uj = uz,i and j have secular terms [e.g. , from the product
sin(uq) sin(~2)], and )p(t)] diverges linearly like p~~zt as
t ~ oo. This secular growth is the essence of the MTW
dynamics. The translation speed for these MTW states
grows from zero as p~~2. When uy g uz, p(t) has terms
(~~ —&uz) Q(t), where Q(t) is a quasiperiodic function

of t. Hence as (uq —u2) ~ 0, flower sizes diverge like
(~q —uz) . It is computationally too costly to deter-
mine accurately the scaling exponents for spiral solutions
of Eqs. (1); the spiral behavior is nevertheless consistent
with the model scalings. In addition to the 1:1resonance,
there are resonant bifurcations in the model at every in-
teger value, k, of v. See Fig. 3. For a k:1 resonance, it
can be shown that the translation speed scales as p~~~~~.

Higher-order,
) k) ) 1, resonances have not been observed

for spiral waves.
In conclusion, we have shown that the complex (me-

andering) dynamics of spiral waves are organized around

the codimension-two bifurcation ~here Hopf eigenmodes
interact with eigenmodes resulting from Euclidean sym-
metry. We have proposed simple model equations for this
bifurcation and have shown that these equations gener-
ate dynamics strikingly similar to the dynamics of spi-
ral waves. These equations and their bifurcations are
of a fundamentally new type from the point of view of
symmetric bifurcation theory: as simple as the model
equations are, there is no general group-theoretic method
which allows one to derive them systematically. More-
over, the dynamics we have examined are not contained,
in their entirety, in any normal form based on linear ac-
tions of compact groups. It will be of interest to extend
symmetric bifurcation theory in the direction suggested
by this work.
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