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Universality and Scaling at the Onset of Quantum Slack Hole Formation
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In certain two-dimensional models, collapsing matter forms a black hole if and only if the incoming
energy Aux exceeds the Hawking radiation rate. Near the critical threshold, the black hole mass is given

by a universal formula in terms of the distance from criticality, and there exists a scaling solution
describing the formation and evaporation of an arbitrarily small black hole.

PACS numbers: 04.70.Dy, 04.60.Kz

Recently remarkable critical behavior has been dis-
covered at the onset of classical black hole formation.
Choptuik [I] considered a two-dimensional theory ob-
tained from the S-wave sector of four-dimensional gen-
eral relativity coupled to a massless scalar field. A suf-
ficiently weak incoming S-wave pulse is simply reflected
through the origin to an outgoing pulse. This behavior
changes qualitatively as the initial amplitude is increased.
Above a certain threshold, the pulse crosses its own
Schwarzschild radius before it reaches the origin, and a
black hole is formed. Choptuik [1] numerically investi-

gated the mass M gH of the resulting black hole as a func-
tion of the distance 8 in the initial data space from the
threshold. For small b he finds

InMaH = ylnb+O(b' ),
where the critical exponent y is numerically found to be
near 0.37. This result appears quite universal and is in-

sensitive to the precise definition of 8 or scalar field cou-
plings. In addition the near-threshold scaling solution
was found to have fascinating self-similar oscillations.
Related work can be found in [2]. At present there ap-
pears to be little analytic or conceptual understanding of
these interesting phenomena.

Two-dimensional theories obtained by S-wave reduc-
tion from four dimensions have also been of recent in-

terest as simplified arenas for the study of quantum black
hole evaporation [3]. In this context null matter which

reduces to a free conformal field in two dimensions is usu-

ally considered because it is much simpler than a scalar
field (which reduces to a field with complicated gravita-
tional couplings). At the classical level, every incoming
S-wave pulse of such null matter, no matter how weak,
forms a black hole. A threshold appears, however, when

quantum eAects are incorporated: Energy must be

thrown at the origin at a rate faster than a ne~ly formed
black hole wants to Hawking evaporate.

In this paper we study the onset of quantum black hole
formation using the semiclassically soluble two-dimen-
sional Russo-Susskind-Thorlacius (RST) model [4]. We
find analytically that

ln =—Inb ——inc+0(b ) .
~sH 1 1 0

2 2

MpH is defined here as the incoming energy of the null

matter swallowed by the black hole during its lifetime
and k is the dimensionful parameter of the model. The
O(b ) term depends universally on a, the second deriva-
tive of the energy density at the point ~here the critical
threshold is exceeded. [It would be interesting to deter-
mine if the O(b ) term of (1) has a similar universal

dependence. ] The O(b'l ) corrections depend nonuniver-

sally on the shape of the incoming pulse. We also find a

scaling solution near criticality which corresponds to the
formation and evaporation of an arbitrarily small black
hole. We have not determined whether the scaling (2) is

universal with respect to small changes in the coupling
constants of the theory. Presumably numerical work is

required to answer this interesting question.
There are obvious similarities between our results and

those of Ref. [1],but there are also apparent diA'erences.

First of all, our critical exponent is a rational number
~hereas Choptuik's at least appears to be irrational.
Second, there is no analog of the self-similar oscillations
in our work. This could be a special feature arising from
the linear nature of the RST equations, while more gen-
eral two-dimensional models (which are not analytically
soluble) might exhibit such oscillations.

We now present a derivation of the scaling relation (2).

I

%he semiclassical eAective action for the RST model is

1S= dxJ —g2x" e
—2y

y R+4c —2y[(Vy)2+$2] g (Vf )2jv 1

24 2i 1

w
J d'xJ —g(x) d'x'J —g(x')R(x)G(x;x')R(x'), (3)

96m

where g„„is the two-dimensional metric, p is a scalar field called the dilaton, f; are /V minimally coupled scalar matter
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The function t~(x+) takes the value t+ = —1/4(x+) in

Kruskal coordinates for any incoming rnatter energy flux

which vanishes sufficiently rapidly at asymptotic early
and late times. The field redefinition (4) is degenerate at
0 = —,

' and 0 & 4 does not correspond to a real value of
The curve 0 4 is the analog of the origin of radial

coordinates in higher dimensional gravity and solutions
should not be continued beyond it. (This analogy can be
made precise when the model is interpreted as an

effective theory for radial modes of near extreme magnet-
ic dilaton black holes in four-dimensional gravity [31.) In-
stead, RST impose the following boundary conditions at
this curve, wherever it is timelike [41:

~+ 0ln-lt4=0 (6)

Incoming energy flux is then reflected oF the boundary
and the total outgoing flux (including the anomalous part

) can be determined by using (6). The boundary curve
undergoes dynamical motion in response to the incoming
matter and this gives rise to some nontrivial behavior in

this model, in spite of the extreme simplicity of the field
equations (5).

The boundary conditions (6) ensure semiclassical ener-

gy conservation and also that the physical curvature
remains finite at the boundary curve as long as it is time-
like. It should be noted, however, that these boundary

fields and G is a Green function for the operator V . (For
more details on this model consult [4,5]. We use the con-
ventions of [5].) The eA'ective action includes the one-

loop Liouville term due to the matter fields and if N is

large this term provides the dominant quantum backre-
action on the geometry. This model diA'ers from the orig-
inal Callan-Giddings-Harvey-Strominger model [6] by a
finite local counterterm, which restores a global syrnme-

try of the classical theory and enables writing down exact
semiclassical solutions in a rather simple form. Numeri-
cal analyses of the original model [7] indicate, however,
that the two models are similar, i.e., that the qualitative
behavior of semiclassical solutions is not sensitive to the
existence of the global symmetry.

It is convenient to work in conformal gauge, g+-
= —

2 e ~, g++ =g 0, and use the global symmetry
to further fix the coordinates to "Kruskal gauge,

" where
p=&+ —,

' ln(N/12). This eliminates the conformal factor
from the discussion. If we define a new dilaton field,

0 = e ~+ —P+ —ln
12 2 1 1 N
N 2 4 48'

the semiclassical equations reduce to

a, a I; =0, a a 0 = ~', -a' 0 =TI +t+,
(5)

where

N

TI + =(6/N) g (8~f~)'.

conditions are not the most general ones allo~ed, and our

results may depend qualitatively on this choice. Indeed

(6) is incompatible with Dirichlet or Neumann boundary

conditions on the f;, and may not be realizable as the

semiclassical limit of any fully quantum mechanical

boundary conditions [8]. Alternate possibilities are cur-

rently being explored.
The solution corresponding to incoming matter energy

flux, which tapers oA' at early and late times, but is other-

wise quite general, is given by

0(x+,x ) = —x+h2x +Pp(x+)]+(I/X)M(x+)
—(I/X)M(xtt (x ))
—

—,
' ln[x+/xit (x )],

where
+x+

M(x+) =X) du uT++ (u),00

(7)

If, however, the incoming energy flux becomes larger
than the outgoing Hawking flux of a two-dimensional

black hole, TI++ (x+)) 1/4(x+), for some value of x+
then the boundary curve becomes spacelike and it is less

trivial to determine its shape. [The black hole tempera-
ture is independent of mass in this model and an energy
flux of TI++ (x+) =1/4(x+) in Kruskal coordinates cor-
responds to a uniform incoming flux, TI++ (e+) =A, /4, in

the coordinate, Acr+ =Ink, x+, appropriate to asymptotic
inertial observers. ]

Spacelike segments of the boundary curve are curva-
ture singularities. They form inside regions of future

trapped points which are bounded by an apparent hor-

izon, located where 8~0 =0 [9]. Applying 8+ to (7) one
finds that the apparent horizon curve (xH, xH ) satisfies
(9) for all values of xH. In other words, the apparent
horizon coincides with the boundary curve where the
latter is timelike, but where the boundary becomes space-
like the two curves separate and the apparent horizon
cloaks the singularity, as shown in Fig. 1. Once the in-

coming energy flux falls below the threshold value the
black hole evaporates and the apparent horizon ap-
proaches the singularity. The curves join again at the end

point of the evaporation, which is denoted by F, in Fig. 1.
The null line segment x =xg, xg+(x~ ) & x+ & x~+, is

the global event horizon of the geometry. We define the
black hole mass to be the total energy (as measured at

) which enters the black hole

M aH
=M (xE+ ) —M (xg+ (xE ) ) . (10)

+x+
P+(x+) = du TI++ (u),ao

and xg+(x ) is the x+ value of the point on the bound-

ary curve from which the reflected signal propagates to
(x+,x ). Wherever the boundary curve is timelike its

shape is a simple function of the incoming energy flux,

X'xtt = P+(xtt ) —I—/4xtt .
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FIG. I Kruskal diagram for black hole formation and evap-
oration in the scaling regime. A near-critical flux of matter en-
ergy is incident from x = —. The solid curve is the A = —,

boundary and the dashed curve is the apparent horizon. The
spacelike portion of the solid curve is the black hole singularity.

Since both ends of the global horizon are on the boundary
curve and also on the apparent horizon it immediately
follows from (7) and (9) that

Tf++(rJ+) =X'(-,' +B)(I —aX'tr+2+ ) . (i2)

It turns out that the higher terms in the Taylor expansion
of? ++ do not contribute in the scaling limit.

To obtain the shape of the apparent horizon curve, we
transform to Kruskal coordinates, compute P+(x+) for
this flux distribution, and insert the result into (9). We
are interested in the 8&(1 limit and for that purpose it is
convenient to shift and rescale the Kruskal coordinates as
follows:

A,x + = 1+dh/tz (a + —2),

iMBH In~xE /xB (xE+ +
4

Now consider black hole formation just above thresh-
old. For concreteness assume that the incoming energy
flux has a maximum at ko+ =Ink.x+ =0, where its value
is T++ =A, ( —,

' +b'), and that the flux is below threshold
everywhere except near cr+ =0 so that only a single small
black hole is formed. In the scaling limit, 8 0, a gener-
ic incoming flux of this type may be parametrized as fol-
lows near o+ =0:

FIG. 2. The two shaded regions have equal area for any
point (as+, as ) on the singularity curve.

[as —aa (as )1 +
= —aE +aH (aE ) .+ + — daS

aS
(is)

This is a nonlinear diff'erential equation and we do not
have an analytic solution, but there is no explicit depen-
dence on the flux parameters so the shape of the curve
must be universal. However, we do not need the whole
singularity curve in order to determine the black hole
mass (11). It is sufficient to locate the end point of evap-
oration and this can be achieved by the following
geometric argument, which is illustrated in Fig. 2.

Take any point on the singularity curve and consider
the past-directed null line a =as which extends from

a minus

a plus

The only reference made to the parameter a is in the
definition of the scaling variables (13). Higher orders in

the Taylor expansion of T~++(o+) in (12) only contrib-
ute terms carrying positive powers of 6, which can be ig-
nored in the scaling region.

It is straightforward to show that the singularity curve
is also universal in this limit. Expressing (7) in terms of
(a+,a ) coordinates and applying d/da+ to both sides
yields the following differential equation for the 0 = —

„

curve:

kx = —(I/k)P+(I/A, ) ——'+i'a'/iz(a + -', ) .

The origin of the (a+,a ) coordinate system has been
chosen where, to leading order in 6, the boundary curve
turns spacelike, as shown in Fig. 1. In the scaling region
where higher order terms in 6' can be dropped, the ap-
parent horizon takes a simple and universal form,

&H (&H) 2&H + l2 &H

-3-

FIG. 3. Singularity curve obtained from numerical calcula-
tiou. The dashed curve is the apparent horizon (14).
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a+ =a&+ to the timelike boundary curve at a+ =a&+
x (az ). Denote by P the point where this null line inter-
sects the apparent horizon. The value of Q(ap+, ap ) can
be obtained by integrating 8+0 along this null line start-
ing either from the spacelike singularity at ap+ or from
the timelike boundary curve at att (ag ). The value of
t)+0 on a =as can in turn be obtained by integrating
ti-8+0 along null lines of constant a+ starting from the
apparent horizon curve (where 8+0 vanishes by defini-
tion). By using the equation of motion, t) t)+ft = —k,
inside the double integral one thus finds that A(at+,
ap ) —

4 equals the area of each of the shaded regions in

Fig. 2 and therefore these areas must be equal. Interest-
ingly, this "equal area rule" is an exact relationship
which also holds outside of the scaling limit.

The equal area rule, when applied at the global event
horizon, a =as, gives as+ —2 =2 —att (a~ ). Both end
points of the global event horizon are also points on
the apparent horizon curve (14) so we have ——,

' a~+

+ ~g ay+ = —
z att (a~ ) + ~'z att (as' ) . From these

two relations it follows that ag+ =2+v12, att (as. ) =2
—JI2, and the black hole mass (11) is to leading order
seen to be

M aH/A. =43b/a,

which is the scaling relation (2).
Finally, it is straightforward to integrate (15) numeri-

cally to obtain the entire singularity curve. The result is

plotted in Fig. 3.
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