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The mean area of two-dimensional unpressurized vesicles, or self-avoiding loops of hxed length %,
behaves for large lV as ApN3ti, while their mean square radius of gyration behaves as Ri]Ns . The am-

plitude ratio Ap/R$ is computed exactly and found to equal 4tt/5. The physics of the pressurized case, in

both the inflated and collapsed phases, may be usefully related to that of a complex O(n) field theory
coupled to a U(1) gauge field, in the limit n 0.

PACS numbers: 05.20.—y, 64.60.-i

Self-avoiding loops, or lattice polygons, have been stud-
ied extensively as models for planar vesicles. In a
pioneering paper, Leibler, Singh, and Fisher (LSF) [1]
considered the statistics of the area and shape of such

loops, subject to an osmotic pressure difference p and
controlled by a rigidity parameter x. While much of the
interesting physics arises as a result of the variation of
this latter quantity, these authors also observed interest-
ing scaling behavior as a function of p when K=0.
Specifically, they found, on the basis of Monte Carlo
studies and exact enumerations, that for an ensemble in

which the total length, or mass, N of the loop is fixed, the
mean area and squared radius of gyration behave as

(A)N —Ap/V
""V(x), (RG&tv Rp/V X(x),

where x =P N ' and v= 4 is the usual self-avoiding walk

exponent in two dimensions [2]. The scaling functions
are normalized so that X(0) = Y(0) =1. LSF argued
that Vi 2, and conjectured vA =v, a result which was

derived indirectly by Duplantier [3] on the basis of
Coulomb gas arguments. These results were confirmed
and extended to measures of the shape dependence by
Camacho and Fisher [4], and the lattice enumeration
studies were carried to higher orders in papers by Con-

way, Enting, Fisher, Guttmann, and Whittington [5-8].
One result of these studies [4,6,9] was the apparent
universality of the ratio Ap/Rp.

This Letter describes an analytic approach to this prob-
lem. Generalizing the well-known correspondence of the
de Gennes [10], the problem of self-avoiding loops at
fixed p and fixed monomer fugacity u (conjugate to N) is

shown to be equivalent to a complex O(n) spin model

coupled to a U(l) gauge field. This field-theoretic formu-
lation of the problem immediately establishes the scaling
forms in Eq. (1). Moreover, using the methods of two-

dimensional conformal field theory and the Coulomb gas
mappings of Nienhuis [11],the ratio Ap/Rp may be com-

puted exactly to be 4tr/5.
For the sake of definiteness, consider oriented self-

avoiding polygons on a honeycomb lattice. The corre-
spondence to a (complex) O(n) spin model [10,11] is as
follows. Suppose that s, (r) label the components (a
= I, . . . , n) of a complex-valued spin at the site r These.

spins are normalized so that Trs, (r)sb(r ) =ii,bb„, and

Trs, (r)sb(r') =Trs,*(r)sb*(r') =0. Then the partition
function Z=Trg, „[1+uLs,*(r')s, (r)+c.c.] gives, in

the limit n 0, the generating function for the number

piv of (unoriented) self-avoiding loops per site, Z=1
+2n Jt/'gtvpNu +O(n ), where JV is the total number of
sites. Up to this point, the complex O(n) model is com-

pletely equivalent to the usual real O(2n) model. Consid-
er now a unit current J„Aowing along each link of a poly-

gon in the direction of its orientation [9,12,13]. An expli-
cit expression for this current, when inserted into correla-
tion functions of the lattice O(n) model, is J„(r,r')
= u (r' —r )„g,[s,*(r')s, (r) —c.c.], where the lattice
spacing has been taken equal to unity. In the continuum

spin version of the O(n) model, in which the spins are re-

placed by a field 4, (r), J„ is just the U(l) current,
(I/2i)L (Ct, rl„@,—@,r1„4,*), whose space integral gen-

erates the global U(l) symmetry Ct, (r) e"&,(r) The.
area of a given loop is now given by

A = ——
J vari

—ri~8(rp —rp)Jp(r)Jp(r')d rd r' (2)

introducing Cartesian coordinates r =(rp, ri). This ex-

pression is valid for any non-self-intersecting loop (but
not, in general, for loops which do self-intersect, since it

weights different regions by the modulus of the winding

number of the loop around them). It differs from that for
the signed area, which is proportional to e„,fr„J„(r)d r.
This latter quantity was used in Ref. [14] to study ordi-

nary intersecting loops as a model of vesicles. Ho~ever,
in the absence of any pressure diA'erence its mean, after
averaging over orientations of the loop, vanishes identi-

cally, and it is therefore not a suitable measure of the
area.

In fact, Eq. (2) is readily recognized as the expectation
value of the polygon regarded as a Wilson loop in a U(l)
gauge theory,

A = (A„(r)A„(r'))J„(r)J,(r')d rd r', (3)

in the gauge A i =0, where (A„(r)A,(r')) = ——,
' 6„p6~

&& lri —r i ~B(rp —rp). It is straightforward to check that a

similar result holds also in a covariant gauge, where

(A„(r)A,(r')) =(I/2tr)(8„„In~r —r'1 —r„r,/r ). This is
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important, since in this gauge the rotational invariance of
the final result in the continuum limit is manifest.

In the continuum limit near its critical point, the O(n)
lattice model corresponds to a field theory with O(n)
symmetry, which has been studied extensively in two di-
mensions [13,15,16]. This continuum theory will possess
a conserved U(l) current J„. It then follows from the
above discussion that the continuum version of the gen-
erating function for self-avoiding loops weighted by e~" is

given by the n 0 limit of an O(n) theory, described by
an action Sp, coupled to an Abelian gauge field,

fO

Z Tr SA„exp S—o+ie J„A„d r —
4 F„„d r

(4)

where, as usual, F„„B„A„—B„A„. Integrating out the

gauge field yields the identification P —e2/2. Several
remarks may be made at this point. First, since A„ is di-

mensionless and J„, being a conserved Noether current,
retains its canonical dimension of inverse length, it fol-

lows that p has renormalization group eigenvalue yz 2.
From this and sample renormalization group scaling ar-
guments, follow the scaling laws in Eq. (1) with v~ v

and p 2. Second, the "physical" region of the U(l)
gauge theory, in which the gauge coupling e is real and

opposite charges attract, corresponds to a negative inter-
nal osmotic pressure difference. In that region, LSF find

that for large enough N the loops collapse and behave
like branched polymers. This is to be expected from the
field theory, since in 1+1 dimensions a U(l) gauge field

provides a confining potential so that the only asymptotic
states are neutral. The world lines of these bound states
correspond to the Alaments of the branched polymer.
The inflated phase, corresponding to p &0, does not

strictly make sense in the field theory, since the vacuum
would become unstable to charge separation. As is well

known [17], the singularity in the free energy for e (0
may be described in weak coupling by an instanton calcu-
lation. For p & 0 it should be possible to neglect the self-
avoiding constraint, so that the action Sp may be replaced
by that of n free complex scalar fields. In the first quan-
tized picture, the instanton configuration corresponds to a
particle-antiparticle pair being created at some imaginary
time rp and annihilating at time rp, their world lines
describing a circle of radius R (fixed by extremizing the
total action) in Euclidean space. This corresponds exact-
ly to the physical picture of an inAated vesicle.

Now return to the case p 0, and the expression Eq.
(2) for the mean area. It is easier to work in the axial
gauge, although the same results are obtained in the co-
variant gauge. Averaging Eq. (2) over the ensemble of
all self-avoiding loops,

2n JVg pn(A)Nu = ——'

)r i r 18i(r oro)—
N 2"

x(Jo(r)Jp(r'))d rd r', (5)

where J is now the U(l) current of the complex O(n)
theory, in the limit n 0. Thus

ng prv(A)nu ——ao ri(Jo(ri, 0)Jo(0,0))dr i,
2

(6)
where ao is the area per site. In general, by current con-
servation and dimensional analysis, the correlation func-
tion (J„(r)J„(0)),evaluated in the massive O(n) field

theory, has the form (8„8„—b„pz)f(m)r)), where m is
the mass and f is a dimensionless scaling function, whose

large r asymptotic behavior may be evaluated nonpertur-
batively using the form factor approach described in Ref.
[13]. However, at short distances, it becomes indepen-
dent of ni, and therefore has the form [12] k(n)(r„r„
—yr b„„)//r, determined, up to the constant k(n), by
current conservation and rotational symmetry. Since the
normalization of this current is fixed by the requirement
that its integral generate the U(l) symmetry, the number
k(n) is universal. Moreover, being a short-distance limit,
it should be calculable within the conformal field theory
corresponding to the massless complex O(n) field theory.
The field theorist will recognize k as the chiral anomaly,
since current conservation implies the existence of a con-
tact term proportional to b2(r) in the operator product
JL (r )JR (0) of the left- and right-moving currents
JL,n Jp~ Ji. [For integral values of n & I the U(l)
symmetry would be embedded in a Kac-Moody algebra
and k(n) would be proportional to the level number, but
for n ( 1 such a concept does not appear to make sense. ]

Since the correlation function on the right-hand side of
Eq. (6) behaves like —k(n)/2(ri2), the integral appears
to diverge logarithmically at short distances. In fact such
a divergence must occur, since otherwise the integral
would be dimensionless and therefore independent of the
mass m, implying that the left-hand side has no singulari-

ty as a function of u. In fact, if b is used as a short-
distance cutoff, this divergence must be of the form
In(nib). Using the fact that the mass vanishes at the crit-
ical point u u, according to m-(u, —u)", it follows
that the right-hand side of Eq. (6) has the singular
behavior —

4 apk(n)vln(u, —u) and hence that, as N

pn(A)n —4 o'apk'(0) vN 'u,

where the lattice-dependent integer cr appears [9,IS] be-

cause, on non-close-packed lattices, the series is in fact in

u and therefore has o equivalent singularities on

(u) u, . Defining the amplitude B by pn-BN
xu, , it follows that BAp 4 ~rapk'(0)v, which gives

8 k'(0) for the square lattice (o 2, ap 1).
The next step is to evaluate k(n) using Coulomb gas

methods. These are explained in detail in Ref. [11] and
the reader who is unfamiliar with them is referred to this
article. The mapping to the Coulomb gas proceeds in two
stages. Gn the honeycomb lattice, the expansion of the
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partition function of the complex O(n) model yields a
sum over configurations of nonintersecting oriented loops,
weighted by a factor of u for each link and n for each
loop. This latter factor may be written in a local fashion
by incorporating a factor e —'~ at each occupied vertex,
depending on whether the oriented loop makes a turn
through ~ tr/3 at that point. Thus (anti)clockwise loops
accumulate factors of e '~ or e '~, respectively. After
the summation over orientations, the appropriate factor
of 2n per loop may be recovered by choosing n =cos6g.
This model may then be mapped onto a solid-on-solid
(SOS) model by assigning heights p(r) (which are con-
ventionally chosen to be integer multiples of tr) to the
sites of the dual lattice. Neighboring heights on either
side of an oriented bond differ by +' tr; otherwise they are
equal. By convention, the higher side is on the right,
looking along the oriented bond. This model is then
supposed [11] to renormalize in the long wavelength
limit onto a Guassian model with action SG =(g/4tr)
x f(8&) d r, where g=1 —6g/tr. However, there is a
caveat: In the SOS model the factors e —'z lead to the re-
sult (e ' '«4(' t') =1, as may be seen by direct calculation
in the fugacity expansion. In the Couloinb gas language,
where p is interpreted as an electrostatic potential, this
phenomenon corresponds to a total electric charge 12@/tr
on the boundary, which preserves overall neutrality.
Thus all nonzero correlation functions must correspond to
a total charge —12@/z in the interior.

How should the U(l ) current of the complex O(n)
model be represented in the SOS model? The naive can-
didate is simply J„=(I/tr)e„Q„p, where 6, denotes a

lattice difference between sites of the dual lattice. This
current is conserved and has the property of taking the
values +' I as required. But it is nevertheless incorrect,
since clockwise and anticlockwise loops are counted with
diA'erent phase factors, resulting in a net clockwise
current of e '~ —e ' =2i sin6g around each loop. In ad-
dition, it may be seen that the correlation function
(J„(r)J„(r')) receives contributions when the links r
and r' are on diAerent loops, a feature which is absent in

the O(n) model. This correlation function also suA'ers

from having net charge zero, so the charge on the bound-
ary is not cancelled.

However, as shown by other examples discussed in Ref.
[11],the nature of the mapping between the operators of
the O(n) model and those of the SOS model is not one to
one. The only requirement is that the correlation func
tions of the O(n) model correspond to correlation func-
tions in the SOS model. In order to reproduce the corre-
lation function (J„(r)J,(r')) of the O(n) model, it is sim-

ply necessary to find operators A and B of the SOS model
such that (A(r)8(r')') gives the required result in the
sum over graphs. The above argument shows that taking
3 =B=J does not work. However, there is another
conserved current J„=Le„&„(e ' '«~ '), where the
constant X, is to be fixed. This has the property that its
expectation value around a given loop vanishes, as re-
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quired, on summing over both orientations, since this
is proportional to (e ' 'z —1)e '«+(e' '« —

l )e '«=0
Now consider the current-current correlation function,
which is the expectation value ol' J„(r)J,(r') in the O(n)
model. For a given configuration in the loop gas, after
summing over both orientations, this quantity takes the
values 2nr"„r",' if r and r' lie on the same loop (where r" is a
unit vector along the link r), and is zero if they lie on
diAerent loops. A suitable candidate for this in the SOS
model is therefore

= —4@ir"„r"„'sin6g .

Thus one should choose k =in/(2sin6g). It is somewhat
curious that it is necessary to use diA'erent currents J and
J in this expression, but such a result is consistent with
the requirement that the total charge be —12@/tr for the
correlation function to be nonzero.

It is now straightforward to evaluate Eq. (8) in the
Gaussian model with action Sg, replacing the lattice
diAerences by derivatives, and using the operator product
expansion

t1„'P(r')e ' ' ~" —( —12ig/gtr)(r —r')„(r —r')
—] 2i'Zy&r&l~

The result is of the form expected, with

12' 2n arccosnk(n) =
trv 1 n(tr+ arcco—sn )

(9)

where 0 ~ arccosn ~ n. For n =1, the model describes a

single species of charged boson with repulsive interac-
tions, whose infrared behavior is that of free fermions. In
that case, one finds k =2/tr, as may be checked indepen-
dently. For n 0, Eq. (9) gives k'(0) =2/3tr, so that
BAD =aaa/Sn.

In order to eliminate the lattice-dependent factors from
this otherwise universal result, it may be combined with
the relation BRti =Sean/32tr, which follows from a sum

rule [191 which is a consequence of Zamolodchikov's v-

number theorem [20]. This amplitude relation was first
derived for the square lattice in Ref. [21], and general-
ized in Ref. [91. The main result given in the introduc-
tion then follows. Table I shows the comparison of these
predictions with results of lattice enumerations and a
Monte Carlo simulation of a continuum model. The
agreement is very satisfactory.

It is interesting to note that random loops with self-
intersection, for which (R )N —lV, correspond to a free
O(n) theory, for which the current-current correlation

since the quantity in ( . ) is zero when r and r' are on
diA'erent loops, for the same reason as above, and when

they are on the same loop, it takes the value

trr" r"'(e — z 1)e z tr(e z 1)e
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Square Triangular Continuum Prediction

CMO 2
B 0.5623

Ao 0.1416
Rt] 0 05631 '

BA p/oap 0.039 81
A 0/R$ 2.515

u3/2
0.2640
0.131

0.0399

0.314+ 3

I /gn =0.0397887
2.55 ~ 5 4n/5 2.51327

TABLE I. Most accurate existing estimates of the ampli-
tudes B, Ap, and Rt] and their universal ratios compared with
the predictions of this work.

lem, and A. Maritan and A. Stella for bringing Ref. [25]
to my attention.

Note added. —After this work was completed, Ref.
[25] was brought to my attention. The authors of this pa-
per study the deflated regime, using a gauge field in order
to generate the area term, but they use a lattice formula-
tion with a Zz rather than a U(l ) gauge field. They also
conclude that the pressure p has renormalization group
eigenvalue y&=2. In general, the use of a U(1) field
seems more suited to an analytic, continuum approach.

function behaves as r Inr at short distances [12]. As a
result, the mean area of such walks (weighted as dis-
cussed earlier) behaves as N lnN for large N. This is not

surprising, since, as mentioned above, such loops are
weighted by their winding number, whose average grows
logarithmically [22]. In higher dimensions, Eq. (6) may
be generalized to relate the generating function for the
mean area of a loop projected onto a fixed plane to a
similar integral over the current-current correlation func-
tion. Unfortunately, for d) 2 the singular behavior of
this integral does not come entirely from the short-
distance behavior, and therefore the whole scaling func-
tion f(mr) is required, rather than just the coefficient of
its short-distance behavior, which was calculated in an e
expansion by Miller [12]. However, this argument does
imply that the mean projected area grows as N ", in con-
tradiction to the numerical findings (with rather short
series) of Ref. [23].

In this Letter I have shown how the theory of pressur-
ized two-dimensional vesicles without rigidity may be
given a field-theoretic basis. For zero pressure, this leads
to an exact prediction for the universal amplitude ratio
Ao/Ro. In the inflated phase p )0, instanton techniques
are applicable and should yield an asymptotic expansion
for the crossover functions in Eq. (I) for large argument
x. This work is currently in progress. The collapsed
phase p (0 corresponds to confinement, and may provide
an alternative field-theoretic way of describing the so
far only partially solved problem of two-dimensional
branched polymers. Branched polymer behavior has also
been found recently in a slightly different model of self-
avoiding loops [24], in which the loops are allowed to
move in a background of random impurities under the
constraint that the loop should contain no impurities.
These may be incorporated into the above model by al-
lowing them to act as the sources for the U(1) gauge
field. Preliminary work suggests that this will lead to re-
sults similar to those obtained from a coupling to the
area.

I thank P. Fendley, M. E. Fisher, A. J. Guttmann, and
J. Miller for correspondence and discussions on this prob-
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