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Elastic Theory of Pinned Flux Lattices
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The effect of weak impurity disorder on flux lattices at equilibrium is studied in the absence of
free dislocations using both the Gaussian variational method and, to O(e = 4 —d), the functional
renormalization group. We find universal logarithmic growth of displacements for 2 ( d & 4:
(u(x) —u(0)) 2 ~ As 1n ~z~ and persistence of algebraic quasi-long-range translational order. When
the two methods can be compared they agree within 10'Fo on the value of Aq. We compute the
function describing the crossover between the "random manifold" regime and the logarithmic regime.
A similar crossover could be observable in present decoration experiments.

PACS numbers: 74.60.Ge, 05.20.—y

There is considerable interest in describing the effect
of microscopic disorder on the Abrikosov vortex lattice in

type II superconductors. It is generally agreed, as pre-
dicted long ago by Larkin [1], that the long-range trans-
lational order of the lattice is destroyed by weak disorder.
However, the precise way in which the order is destroyed
is beyond the reach of Larkin's original Gaussian model,
and despite much recent work [2—5] a correct quantitative
theory is still lacking. In this'Letter we provide such a
quantitative description of the static properties of a lat-
tice in the presence of weak disorder, using the two main
analytical methods developed to study manifolds in ran-
dom media, the Gaussian variational method (GVM) [6]
and the functional renormalization group (FRG) [7]. It
also applies to other pinned elastic systems studied ex-
perimentally (magnetic bubbles, Wigner crystal [8,9]).

An important quantity to be computed is the transla-
tional correlation function C(r) = (e'+'1"1"1 "1011) [u(r)
is the displacement from the perfect lattice and Ko one
of the first reciprocal lattice vectors]. C(r) is directly
measured in Bitter decoration experiments [10]. These
experiments have been analyzed using Larkin's model,
in which weak random forces acting independently on
each vortex are added to the conventional elastic energy

[2]. However, this Gaussian theory is too simple to ap-
proximate correctly the full nonlinear problem. As a re-

sult, the exponential decay of C(r) it predicts in d = 3
becomes inexact beyond the Larkin-Ovchinikov length
where the lattice behaves collectively as an elastic mani-
fold in a random potential with many metastable states
[3]. This was also pointed out by Bouchaud, Mezard,
and Yedidia (BMY), who first used the GVM to study
this problem, and found a power-law roughening of the
lattice and stretched exponential decay of C(r) [4]. How-

ever, the periodicity of the lattice was not properly taken
into account. Indeed, as was erst shown by Nattermann
using qualitative Flory arguments, periodicity leads to
logarithmic roughening [5].

Here, we retain all the features missing in the previ-

ous approaches: nonlinearities, metastable states, and
periodicity of the lattice. We compute, for an elastic
theory with disorder, the correlation function of the rel-

ative displacements of two lines B(r) =
& ([u(r) —u(0)]2)

as a function of their separation r, as well as C(r).
Within our approach these quantities are related through

—K B1'C(r) = e +os("1/ . We are primarily interested in the
triangular Abrikosov lattice (d = 2+1), but also mention
the case of d = 2+ 0 (thin films) or d = 1+ 1 (lines in a
plane). We find that at large r, B(r) Ad ln]r~, where

Ad is a universal amplitude depending on dimension only,
and compute this amplitude using both the GVM and,
in a e = 4 —d expansion, the FRG. These two rather dif-

ferent methods agree at order e within 10%. C(r) has a,

slow algebraic decay in d ) 2, C(r) (1/r) ', and quasi-

long-range order persists. Our approach therefore con-

firms Nattermann's prediction [5], and allows in addition
the calculation of the exponent Ad. Our results are valid

provided that there are no dislocations in the lattice and
that the system has enough time to reach equilibrium.

The former is motivated by decoration pictures showing

remarkably large regions free of dislocations. Since the
core energy of a dislocation loop in d = 3 increases with

its size, the possibility remains that at higher fields the
vortex lattice is free of dislocations. Whether the sec-

ond hypothesis is realized can only be decided within the
context of a given experiment, but our assumptions will

always hold below a certain length scale.
%'e also compute the full crossover function in d = 3,

choosing for simplicity dispersionless elastic constants

(Fig. 1). There are three different regimes as a function

of the separation r. (i) When B(r) is shorter than the
square of the Lindemann length 172, ——(u ), the thermal

wandering of the lines averages enough over the random

potential and the mode1 becomes equivalent to Larkin' s
model for which B(r) ~ri4 ". At low temperature, lT

is replaced by the superconducting coherence length (o
(i.e. , the correlation length of the random potential [3,4]).
(ii) For 1&~ && B(r) & az, B(r) rz" where v 1/6: this
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is the random manifold regime where each line sees effec-

tively an independent random potential. (iii) For r ) (',
where ( corresponds to a relative displacement of the
order of the lattice spacing a, B(r = () a2, the peri-
odicity of the lattice becomes important, and one enters
the asymptotic logarithmic regime. Nonlocal elasticity
and 2d-3d crossover effects relevant for decoration exper-
iments can easily be incorporated in the method by intro-
ducing new crossover length, such as the London length.
Details can be found in [11]. In d = 2, thermal fiuctu-
ations are important (tT = oo) and the random mani-

fold regime is much reduced. We find a modified Larkin
regime with T-dependent exponents B(x) ]x]z"l+& and

a long distance logarithmic regime.
We denote by R; the equilibrium position of the lines

labeled by an integer i, in the xy plane, and by u(R;, z)
their in-plane displacements. z denotes the coordinate
perpendicular to the planes. For weak disorder a/(' « 1
it is legitimate to assume that u(Q, z) is slowly varying
on the scale of the lattice and to use a continuum elas-
tic energy, in terms of the continuous variable u(x, z).
Impurity disorder is modeled by a Gaussian random
potential V(x, z) with correlations V(x, z) V(x', z')
h(x —x')b(z —z'), where h(x) is a short-range func-
tion of range (0 and Fourier transform b,q. The total
energy is

1
H, ( = — d xdz((egg —cga)(() u ) +csa(8 up) +c44(B,u ) ]+f 1 zdzv(z, z)P(z, z),

2

where n, P denote in-plane coordinates and the density is p(x, z) = +,. 6(x —R, —u(R;, z)). Although we have
also performed the calculations directly on the Hamiltonian (1) [11], it is more enlightening to use the following
decomposition of the density that keeps track of the discreteness of the lines. In the absence of dislocations, generalizing
[12], one introduces the slowly varying field P(x, z) = x —u(P(x, z), z). The density can be rewritten as p(x, z) =
podet[8 pp] QK e' '4'~*"& p0[1 —8 u (p(x, z), z) + QK+0e '*pK(x)], where pK(x) = e '"f4'&*"&"l is the usual
translational order parameter defined in terms of the reciprocal lattice vectors K, and p0 is the average density.

Using the replica trick on (1), the above decomposition for the density leads to our starting model:

d qdqzH, ff =
( s ) G0 pu (q, q, )up(q, q, )

a

d xdz) 8 u'8pup+ ) cos(K [u'(x, z) —u (x, z)])
a, b ( K+0 )

with G0 ——(c44q, + cssq )P p + (c44q, + ciiq )P p
in the case of (1), where P+& ——b~p —qoqp/q2 and

Pop = qoqp/q . To be rigorous, (2) should be written
in terms of u(p(x, z), z) but this has no efFect on our re-
sults. It leads only to corrections of higher order in p'u
that we can neglect in the elastic limit a/( « 1 [1],]. For
clmity we pre~nt the cdculation for the ~tropic version
of (2) in d dimensions with G0 ——cq2b p, where c is an
elastic constant and pod. K = b, for all K [x = (x, z)].
The results for (1) are presented at the end. A related
single cosine model was studied by Villain and Fernan-
dez [13] using a real space RG. Our results confirm and
extend their analysis. The crossover from the random
manifold to the logarithmic regime can only be captured
by including all harmonics in (2).

One can get an idea of the efFect of various terms
in (2) by using arguments similar to [14]. Assum-
ing that u varies ~ a over a length (, the density of
kinetic energy is c(a/()2 . The long wavelength
part of the disorder is H~~ 0 J d~x V(x)8 u (x)
6)/2/(~+4/z and ~4" Id ix V(x) cos[K0(x-
u(x))] A~/~/(4/2. There are thus two length scales

(q 0 ~ a (c a"/4) "
and ( ~ a (c a /6)

The q 0 component of the disorder is therefore rele-
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FIG. 1. Plot of bL, versus ln ]x/(~ (solid line), as defined in
the text, for the Abrikosov triangular lattice. The dashed line
is the random manifold result.

vant only for d & 2 and the second term in (2) can be
dropped for d ) 2. Higher Fourier components Vq

disorder the lattice beloved d = 4.
We now look for the best trial Gaussian Hamiltonian
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1 z&
G (q) o ) K2 —~B~g(x=0)

CQ 'AT
K

1B.~(x) = —„([u.(x) —ui (0)]')

(3)

(4)

Q

(2vr)
~ [G„(q)+ Gi,b(q) —2cos(qx)G~b(q)],

Ho in replica space, of the form [6] Ho =
z f &z 1,

xG b'(q)u (q)ui, (—q). Defining the self-energy G,&

cq 6~t, —o~~, and G, (q) = PbG z (q) minimization of
the variational free energy F„=Fo+ (H —Ho)H, leads
to

([u(x) —u(0)] ) = 2Ag ln lz~ (9)

v = vugh'(z), ]1 2 1 2(-lh(z) (10)

with B(0,v) = a2z/2m and v~ = 2vr TA/a c IT /(
The mean square displacement B is B(x) = z, b

~ &
~,

with Ad =4 —d.
We now give the full crossover function for d = 3 for

model (2) with pod Jr, = A. The crossover length is ( =
a c /2vr A. Defining h(z) = g&(A~/A~, )P e
where K = 27rP/a, the solution is, in parametric form,

n being the number of components of u. The stability of
the symmetric solution B~y&(x) = B(x), which mimics
the distribution of displacements by a single Gaussian, is
governed by the replicon eigenvalue A [6]:

= ——)

with

b(x) = h" (t)h(t)dt, ~ f(xh(t)),

1
f(x) =1 —-(1 —e *).

x

Introducing a small regularizing mass in G„G,(q)
cq + p,

2 we find, when p ~ 0, that for d & 2 the
replica symmetric solution is always stable and disor-
der is irrelevant. For d = 2 the condition becomes
p,

2~i ++O~4 '& ( 1 for small p. Thus there is a transi-
tion at T = T, = 47rc/Koz between a stable high-T phase
where disorder is irrelevant and a low Tglassy p-hase

where the symmetric solution is unstable. For 2 & d & 4
it is ahuays unstable and disorder is always relevant.

We now find a replica symmetry breaking solution for
2 & d ( 4, d = 2 to be discussed later. We denote
G(q) = G„(q) and parametrize G,b(q) by G(q, v) where
0 & v ( 1, and similarly for B~b(x). (3) and the algebraic
rules for inversion of hierarchical matrices [6] give

B(0,v) = B(0,v, )

For x (& (, B(0,v) is very small and h(z) ~ 1/z"~ + and
therefore B(x) ~ xz with v = 1/6 for n = 2. This corre-
sponds to the random manifold regime [4]. The crossover
function [(10) and (11)] was derived assuming v~ && v„
equivalent to lT « (. At scales such that B(x) is smaller
than tT or (ri, one is in the regime v ) v, and one re-
covers the replica symmetric propagator G(q) 1/q for

q )) [o](v,), and Larkin's model behavior.
In the vortex lattice (1), assuming ess « ci i,

the crossover length becomes ( = css c44 a /2vr A.3/2 I/2

B ~(x) = BT P+&(x) + BI,P &(x) depends on the direc-
tion of x and we find

a' - (x) css- (x css)
BI.,T(*) = 2, bT, I, I

—
I
+

7r ( ) cii ( cii )
where br, T are similar to (ll) with f replaced by

'Uc d~q 2To'(ut)

(' )" [G.(q) '+ [o](~)1' fr(x) = --—+ —+ —
I

e * fT(x) = f(x) fl(x)-
2 x x x

where [o](v) = uo(v) —fo" divo(iv) and v, is the break-
point such that cr(v) is constant for v ) v, . B(0,v, ) is a
nonuniversal quantity B(0,v, ) (0 + tT .

To discuss the large distance behavior x )) ( it is
enough to keep K = Ko in (3) since B(0,v) )) a .
In that case, using (3), (6), and [o]'(v) = vcr'(v), one
finds the effective self-energy [o](v) = (v/vo)z~s and
vo = 2KOTcgc + /(4 —d) The energy .fluctuation ex-
ponent is 8 = d —2. Energy fluctuations are of order T/v
and the large scale behavior is controlled by small v. One
can now compute the correlation functions,

([u(x) —u(0)] ) = 2nT [1 —cos(qx)]G(q), (7)(2~)~

1 /' ' dv [o.](v) ~ Zg
cq' E 0 v'cq'+ [~l(v)r

with Zg = (4 —d)/TKOSd and 1/Sd = 2" m "~ I'[d/2].
Thus for 2 ( d ( 4 we find logarithmic growth,
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The crossover is shown in Fig. 1. We find that if (/a )) 1
all curves should scale when plotted in units of x/(. The
ratio R = B~(x)/BI, (x) crosses over at x = ( from R =
4/3 to R = 1 as isotropy is restored at large scale.

As d —+ 2+ the function [o](v) vanishes for v & vo =
TK02/4+c Thus in d .= 2 for T & T, there is a one-
step replica symmetry broken solution with [o](v) = 0
for v & v, and [cr](v) = [o](v,) for v, ( v ( 1 [11].
In the glassy phase T & T, the variational method pre-
dicts the following two regimes. For T moderate, the
short distance Larkin regime B(x) x2 crosses over
directly towards the asymptotic logarithmic growth (9)
at a length ( = a(c a /K)i~~ o~2~'1 At low T
Tln((/a)/ca « 1, there is, in addition, an intermedi-

ate random manifold regime. In d = 1+ 1 the starting
model (2) becomes exact due to the absence of disloca-
tions and a RG calculation for T = T, [13,15,16] finds

B(x) ln (x) at large x. If one believes in the validity



VOLUME 72, NUMBER 10 P H YSICA L R EV I EW LETTERS 7 MARCH 1994

(I6'(z) = —
~

——zz(1 —z)72 q36 (14)

Values for other z are obtained by periodicity. The
fixed point is stable except for a constant shift. The
linearized spectrum is discrete and the eigenvectors are
Jacobi polynomials. This function has a nonanalyticity
[7] 6'& )(0) = oo. To compute the correlation function
I' = TG one uses the RG flow equation, I'(q, T, b.) =
e"'I'(qe', Te&z &', b, (l)). Choosing e' q = 1/a we obtain
perturbatively I'(q) = —6"'(0)/q = a(4 "&e/368 q"
Thus we find at order e a logarithmic growth (9) of line

of this RG in a glassy phase, the simple Gaussian ansatz
does not give the exact long-range behavior, due to the
importance of fiuctuations in d = 2. However, it gives T,
exactly and captures correctly the crossover towards a
slower logarithmic regime. Using RG we have shown [11]
that in d = 2 the Larkin regime is in fact anomalous with

TKO
a continuously variable exponent: B(x) a (x/()
for x ( ( (at low T ( is replaced by another length).
Model (2) will apply in d = 2+ 0 at scales shorter than
the distance between dislocations. It could also describe
a polymerized membrane on a disordered substrate, with
very high dislocation core energy.

A previous application of the variational method by
BMY [4] led to the conclusion, which we believe is erro-
neous, that the fluctuations are enhanced at large scales.
They applied the same method to a model in which each
line sees a difFerent disorder. This amounts to introduc-
ing an extra and unphysical disorder in the original model
(1) with correlations decaying as I/~R; —R~ ~". The long
wavelength part of such a disorder dominates since large
global translations of the lattice can improve the bulk en-
ergy, whereas in the physical model the energy gain from
the long wavelength components can only come from sur-
face terms and is thus irrelevant for d ) 2, as shown in
the discussion following (2). Indeed for A -+ 0 the ampli-
tude they obtain vanishes. In fact one can simplify the
saddle point equations of [4] by noting that the x depen-
dence of B(x,u) in these equations is unimportant, up to
higher orders in V'u, and find results identical to those of
the local model (2).

To complement the variational method we perform
a functional renormalization group calculation on the
isotropic model. To simplify we take u to be a scalar
field (n = 1) and c = 1. The replicated Hamiltonian is
H;~~ = —

~z P & f d zb, (u, (x) —ug(z)). The function
b, (z) is periodic of period 1 (2vrKc ——1). The RG equa-
tions to order s = 4 —d have been derived by Fisher [7]
for the random manifold problem:

d = (e —4()E+ (zb, '+ -(6") —b,"b,"(0). (13)
1

A factor Sg was absorbed into b, . The periodicity of the
function implies that ( = 0. We obtain the fixed point
function in [0, 1],

displacement with AgRG = e(2ir) /36 = 1.10'. This
compares within 10% with Ag v~R = e which slightly
underestimates fiuctuations [17]. For 2 ( d ( 4 the real
space RG of [13] also predicts a log but does not give
the universal prefactor Ag or the crossover function. The
agreement between these methods, none being rigorous,
lends credibility to the additional results in d = 3 ob-
tained using the GVM.

To conclude, we have shown that due to the periodic-
ity of the lattice, the pinning by impurities becomes less
effective at large length scales. Although more work is
needed to extend this approach to the problem of a driven
lattice, this is likely to have consequences for the trans-
port properties. For instance, if there is a regime of fiux
creep where plastic deformations can be neglected, en-

ergy barrier arguments [3], and the exponents found here,
lead to a voltage-current relation V ~ exp( 1/Tj—i'),
where p crosses over from p, - 0.7 —0.8 to p = 1/2
as j decreases.
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Note added. —After submission, we received a preprint
by S. Korshunov who considered the single cosine model
and also obtained (8) using the variational ansatz.

' Also at LPTENS, Ecole Normale Superieure, 24 rue
Lhomond, Paris 75231 Cedex 05, France (Laboratoire
Propre du CNRS).
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