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Wawe-Vector-Dependent Tunneling through Magnetic Barriers
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Near tunneling structures are proposed consisting of magnetic barriers that can be created by
lithographic patterning of ferromagnetic or superconducting Slms. The form of the equivalent po-
tential for such a barrier depends on the vive vector of the incident electron. This renders the
transmission through such structures an inherently 20 process since the tunneling probability de-
pends not only on the electron's momentum perpendicular to the tunnehng barrier but also on its
momentum parallel to the barrier. Pronounced resonances are obtaitted for the tunneling probability
and the conductance of a resonant tunneling device consisting of such magnetic barriers.

PACS numbers: 73.40.Gk, 03.65.Ge

The electron motion has been studied extensively in
both macroscopically homogeneous and microscopically
inhomogeneous (on the A. scale) magnetic fields. The
latter limit pertains to scattering by magnetic impuri-
ties. Between these limits lie inhomogeneous magnetic
fields on the nm scale. They have recently been realized
with the creation of magnetic dots [1], the patterning
of ferromagnetic materials integrated with semiconduc-
tors [2,3], and the deposition of type II superconduct-
ing materials on conventional heterostructures [4]. In
the latter case the magnetic Qux lines that penetrate the
two-dimensional electron gas (2DEG) act like scattering
centers and ofFer the possibility of studying weak local-
ization and the dynamics of vortices [5]. Also, an out-of-
plane magnetization has been realized by the deposition
of ultrathin layers of Fe on Ag [6).

Theoretically, in addition to Ref. [5] the creation of
superlattices by an inhomogeneous magnetic Beld (8)
has been studied [7] as well as transport properties of a
weakly and periodically modulated 2DEG [8] with its el-

ementary excitations [9], and electron motion in a stripe
of a 2DEG subject to a constant [10] perpendicular 8
and one in which I3 increases linearly in one direction
[11]. Moreover, various geometric factors that control
the magnitude of the demagnetizing field of ferromag-
netic materials have been studied [12].

Motivated by this wealth of experimental and theoret-
ical results we consider in this Letter electron tunneling
through structures of magnetic barriers and in particular
resonant tunneling. In contrast arith tunneling through
electric barriers, the tunneling probability depends not
only on the electron's momentum perpendicular to the
tunneling barrier but also on its momentum parallel to
the barrier. This renders the tunneling an inherently
boo-dimensional process and the magnetic barriers pos-
sess wave vector filtering properties.

As shoran in Fig. 1 a magnetic barrier can be created
by the deposition, on top of a heterostructure, of a fer-
romagnetic stripe with magnetization (a) perpendicular

and (b) parallel to the 2DEG, (c) of a conducting stripe
with a current driven through it, and (d) of a type I su-

perconducting plate interrupted by a stripe. In all cases
the 2DEG is situated at a distance zp below the stripe
whose thickness and height are d and h, respectively. In-

tegrating Maxwell's equations gives the magnetic Beld

perpendicular to the 2D system [B = B(x,z)e, ] as

B(x, z) = Bp (K(x + d/2, z) —K(x —d/2, z)), (1)
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FIG. 1. I ayout of the system.

where we have for these four cases: (a) Bp = M hp/d,

K(x, z) = 2xd/(x + z2), (b) Bp = Mph/d, K(x, z) =
—zd/(xg+ zg), (c) 8() = I/d, K(x, z) = In[(xz+ z )/d ],
and (d) B(x, z) = Bp Re[1/gl —(x+iz)2], with Mp
the magnetization of the film and I the current driven

through the stripe. In all cases it has been assumed that
h/d (( 1 and h/zp (( 1. In case (d) Bp depends on how

much magnetic flux is concentrated in the stripe which

can never exceed the critical magnetic field for the super-
conductor. The magnetic Beld produced by the stripes, in

units of Bp, is shown in Fig. 2 for three difFerent depths:

zp = 0.1 (solid curve), zp = 0.3 (dashed curve), and

zp —0.5 (dotted curve). The smaller zp, i.e. , the closer
the 2DEG is to the stripes, the sharper the magnetic
barrier structure. Vhth increasing zp the magnetic field

profile becomes gradually smoother. Concurrently with
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as a q-dependent electric potential and the magnetic field

is given by B(x) = [dV(x)/dz]//2V(z).
The free electron wave function on the left side of the

barrier (x (x ) is Q (x) = Ae'"-i *-&+Be ~

and on the right side of it (x ) x+) g+(x) = e'"+i* *+&,

where k~ = /2[E —V(+oo)] is the x component of the
electron wave vector on the corresponding side of the
barrier. Under the barrier there are two solutions for

Q(x) which can be written as a linear combination of the
Weber function D„(x)and its derivative D„'(x).Next we

construct the transition matrix

-5
-1

x/d

0
x/d

FIG. 2. Magnetic field under the stripe corresponding to
the four difFerent configurations as given in Fig. 1. The mag-
netic field is given at the following distances from the mag-
netic stripe: zp = 0.1 (solid curve), zp = 0.3 (dashed curve),
and zp = 0.5 (dotted curve).

~, —[A(zI+q]'+ 2E] |I(z) = 0, (2)

and the function V(x) = [A(x)+q]2/2 can be interpreted

the magnetic Beld profile one expects a scalar (electric)
potential, which can be short circuited by putting a non-

magnetic metallic film [3) between the 2DEG and the
patterned layer

For simplicity we now consider electron tunneling
through a magnetic barrier of constant height Bp and
width d = z~ —z surrounded by regions of zero mag-
netic Beld. The curves of Fig. 2 show that such a
profile can be easily realized. A 2DEG in the (x, y)
plane with a magnetic field B along the z direction is
described by the Hamiltonian H = [p+ eA(x))s/2m'
where the vector potential will be taken in the Landau
gauge A(x) = (0, Bpx, 0) which results in B, = B(x) =
dA(x)/dz. It is convenient to express the results in di-
mensionless units. For that we use the cyclotron fre-
quency ~, = eBp/m', where m' is the efFective mass
of the electron, and E~ = gh/eBp the magnetic length.
We express all quantities in dimensionless units: (1) the
magnetic field B(z) -+ BpB(x), (2) the vector potential
A(x) ~ BpEriA(x), (3) the time t -+ trav„(4) the coordi-
nate r ~ Egr, (5) the velocity v -+ Ega, v, and (6) the
energy E ~ hu, E For GaAs an. d an estimated Bp = 0.1
T we have Err = 813 A. , hu, = 0.17 meV, and E~u, = 1.4
m/sec.

In these dimensionless units the two-dimensional (2D)
Schrodinger equation describing an electron with energy
E admits solutions of the form i'(z, y) = e''r" 1fI(x), where
q is the wave vector of the electron in the y direction. The
wave function g(z) satisfies the one-dimensional (1D)
Schrodinger equation

where we defined the functions u(x) = c(D&(~q)D&(z)
+ D'( ~q)D„( z)j a—nd v(z) = c(D„(~q)D„(z)—
D„( ~q)D~( z)), w—ith p = E —1/2 and z = v 2(z-
q), which satisfies the boundary conditions u(xp)
1, u'(xp) = 0, v(xp) = 0, and v'(zp) = 1. Matching the
wave function at the edges of the barrier, xy, by means
of the above matrix we obtain

A = T„+ Tss +t
l k Tsi —k+Ti2

+ i ~ 1 -1 -li
ik (4)

the electron transmission through the bar»er &(E, q) is

0.5

0

-0.5

—1

0 0.5 1.5

05-
~1+2+ 1

x 0

—05-

'I

I

I

I

I

I

I

I

I
I

I
/

/

r

I I

I
I I
I I t
I I

I I

I

I I i

(
I I

I I

I I 'I

'I 'll

—1
0 0.5

~ ~ ~ I ~ I I ~ I ~ ~

1.5

FIG. 3. Contour plot of the electron transmission probabil-
ity in the (v, v„)plane for (a) a simple rectangular magnetic
barrier, and (b) a more complex structure. The magnetic field
profiles of the corresponding magnetic barriers are shown in
the insets.
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FIG. 4. The transmission probability (a) through the struc-
ture given in (b) for diferent values of the y component of the
electron wave vector (q). In (b) we depict the magnetic field
B(x), the vector potential A(x), and the corresponding po-
tential V(x) for different q values.

given by

t(E, q) = k+/k lAl,

where T i stands for the inverse of the matrix T =
T(x~, x ). For complex structures involving several bar-
riers of constant height, the total T matrix is a product of
the T matrices that correspond to the separate barriers
and the one describing the free electron propagation be-
tween the barriers As .for the electron current through
such a structure, it can be calculated, in the ballistic
regime, by introducing the conductance G as the elec-
tron flow averaged over half the Fermi surface [13]

n'/2

G = Gp t(Es, REF sin P) cos P dP,
—vr/2

(6)

where P is the angle of incidence relative to the x direc-
tion. Further, Gs = ezmvs E/h~, where E is the length of
the structure in the y direction and vF the Fermi velocity.

To reveal the main qualitative features of tunneling
through these barriers we restrict our consideration to (i)
a single barrier, as shown in the inset of Fig. 3(a), and
(ii) complex structures composed of rectangular magnetic
barriers as shown in the inset of Fig. 3(b) and in Fig. 4.

(i) Single barrier. —In this case the magnetic tunnel-
ing problem is analogous to that of electron transmission
above a potential well [14]. The transmission, as a func-
tion of the electron energy, shows some weak oscillations.
Only for q = 0, when the potential V(x) is symmet-
ric, and for specific values of the barrier width, does the
transmission have some resonant structure in the low en-
ergy region due to the presence of a virtual level above
the quantum well.

An important feature of the present problem is the
transmission anisotropy clearly seen in Fig. 3(a) where
we show a contour plot of the transmission in the elec-
tron velocity component plane (v = k, v„=q +
A( —oo)). As can be seen the single barrier possesses
well-pronounced wave vector filtering properties which
can be achieved using quantum point contacts. It is

FIG. 5. Contour plot of the electron transmission proba-
bility in the (v, v„)plane for (a) the structure of Fig. 4, and
(b) the resonant tunneling structure composed of the com-
plex barrier structure of Fig. 3(b) in which the barriers are
separated by the distance L = 3.

interesting to compare this quantum tunneling contour
plot with the classical one, represented by the thick solid
curve in Fig. 3(a), that is obtained from energy and
momentum conservation laws. It is seen that the trans-
mission probability is zero above the thick solid curve
v„=f(v ) = (vz —d~)/2d and 1 below it. The two re-
sults difFer slightly only in a narrow region. This is not
the case for more complex magnetic barrier structures.

(ii) Complex structures. —Figure 3(b) shows the con-
tour plot of the transmission through a complex structure
(see the inset). In contrast to Fig. 3(a), here the classical
and quantum mechanical results difFer drastically. This
is because in the single barrier the nonclassical effects
are only due to a virtual state above the well, whereas
for q = 0 the potential corresponding to the structure of
Fig. 3(b) is a double barrier which exhibits "quantum
mechanical" resonant tunneling properties.

Figure 4(a) shows the transmission through the reso-
nant tunneling structure, shown in Fig. 4(b), as a func-
tion of the energy. We see clearly that the curves in Fig.
4(a) follow closely the potential profile for V(x) shown in
Fig. 4(b): for q ) 0 we have mostly transmission through
double barriers, i.e., resonances, whereas for q ( 0 the
transmission is above a double well. The asymmetry of
the transmission is shown in the velocity contour plot
of Fig. 5(a) together with the classical result. Similar
transmission results are obtained for a resonant tunnel-
ing structure composed of two units identical to that of
Fig. 3(b) with a zero field region, of length I = 3, be-
tween them. The velocity contour plot is shown in Fig.
5(b) together with the corresponding classical result. We
see sharp resonances, the wave vector fihering properties,
and the strong dissimilarity between the quantum and
classical results. Again the latter is due to the quantum
character of tunneling.

Having seen the transmission results, one may wonder
to what extent their structure is reHected in measurable
quantities which involve some kind of averaging. In I"ig.
6 we show the conductance, as given by Eq. (6), for the
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FIG. 6. The conductance through th be arrier structure (see
inset) of (a) Fig. 3(b), and (b) Fig. 4 for difFerent values of the
barrier parameters. The dotted curves show the conduow e con uctance

structures [15] shown in Fig. 3(b) d F' .
with the

) an ig. 4 together
wit the corresponding classical results. Despite the av-

a ain strong
'

rong resonant structure. This structure will be-
come s arper if one can select the wave vectors that ive
the shar estp st resonance in the transmission, cf. Fi . 4. In

ors a give

principle this can be achieved using quantuan um point con-
ac s. s or the classical results, we see again that they

are determined only by the first b
' '

h
lthough our consideration of electron tunnelin

g e rec angular magnetic barrier structures gives
only a qualitative picture, nevertheless these resonant
tunneling spikes should be present

'
thin e more realistic

cases with barriers of smooth shape, cf. Fi . 2. I, c . ig. . ndeed
ese spi es do not depend on the actual sha f h

ma netic bg ic arrier but only on the presence of barriers in
the potential V(x).

In summar they, quantum transmission through
magnetic-barrier structures (i) depends not 1

rgy u a so on the direction of the wave vector, (ii)
possesses wave vector filtering prop t, ("') her ies, (ui) shows well-

pronounced resonances whereas th 1
'

1

not and ivnot, an (iv) is drastically difFerent from the classical
transmission which is determined onl b thy y esumof the

them.
arriers and is independent of th d' t Le is ance between
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