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Model-Free Polarized Neutron Diffraction Study of an Acentric Crystal: Metamagnetic UCoAl
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For the first time, a model-free procedure is developed to analyze polarized neutron diA'raction data
pertaining to acentric crystals. It consists of a two-step process, featuring first an eff'ective flipping ratio
and second a linear inverse problem. The latter is solved either by a new generalized inverse Fourier
transform or by using maximum entropy. Using metamagnetic UCoA1 as a test case, we find the follow-

ing results: (i) the U and Co(2) moments increase with an applied magnetic field whereas the Co(l)
moment remains almost constant; (ii) the U and Co(2) magnetic densities are weakly anisotropic.

PACS numbers: 61.12.Gz, 02.50.Rj, 75.25.+z

Polarized neutron diffraction (PND) [1] is the tech-
nique of choice to determine magnetization densities in

magnetic compounds at a microscopic level. In a vast

majority of cases, PND is used to study ferromagnetic
moments induced by a large externally applied magnetic
field. The physical information resulting from PND ex-
periments is connected with the local magnetic suscepti-
bility, shedding light on the magnetic density details per-
taining to a single ion, or on the separate response of each
localized magnetic center (e.g. , high-T, superconduc-
tors), or else on the chemical bonding or the free radical
behavior at the molecular level (e.g. , molecular magnets).

Since the pioneering work by Nathans et al. [2], PND
has enlarged its scope with the availability of large mag-
netic fields, high-flux neutron reactors, and most recently,
the use of maximum entropy in PND data analysis.
Three benefits result from the use of the latter when a
model-free approach is sought: (i) an enormous increase
of resolution [3], resulting in (ii) the possibility to recon-

struct 3D densities [4], and (iii) improved reconstructed
2D projections using all available 3D data [5].

But a link is still missing, and it is the purpose of this

Letter to fill this gap for the first time: how to tackle
noneentrosymmetric structures, which have been careful-

ly avoided up to now except for a fistful of cases [6].
This Letter is divided into three parts. In the first one,

we generalize the inverse cosine Fourier to the general
acentric case (within a restriction to be discussed later),
~hereas in the second, we describe the alternate and

much more powerful use of maximum entropy. In the
third, we demonstrate in a real data case pertaining to the

(1 I 1) uranium compound UCoAl how our new procedure
discloses new physical results. The latter are compatible
with a multipolar refinement a Ia Varghese and Mason
[7].

For the sake of simplicity, only the following simple

case will be considered hereafter. The sought magnetiza-
tion density m(r) at any r in the unit cell is collinear and

parallel to a known direction u, resulting in a scalar prob-

lem. Thus there is no ordered perpendicular component

[8]. The polarization P of the neutron beam is assumed

to be perfect (P 1). More elaborate corrections, al-

though amendable, fall outside the scope of this Letter.
We now introduce the following notations. Let K=Kk
the scattering vector associated with a given Bragg peak
hkl, N(K) and M(K) the related nuclear and magnetic
structure factors. The K dependence will be skipped
when possible for the sake of clarity. Let M Mu,
M=M'+iM", N=JV'+iN", X=X'+iX", and X =X'
—iL" for any L. Finally, we introduce the two geometri-
cal factors q =1 —(u k) and q' =P u —(P k)(u k)
and let R(K) be the flipping ratio, which is equal to

NN'+q 'MM '+q '(NM*+ N*M )
NN +q MM —q' (NM +N M)

and cr(K) the related experimental error bar.
Our goal is to infer the best density nt(r) given a limit-

ed measured data set of flipping ratios. The N's, q 's,

and q' 's are known.
The first step is to reduce the data to a set of unique

reflections. The second one is to separate the reflections
into two subsets: (i) the centrosymmetric reflections (for
which JV" and M" are zero) and the (ii) acentric ones.
Starting with the first subset, it results from (1) that for a

given K, M M' obeys a quadratic equation. Most often,
only one solution makes physical sense, and we shall as-

sume this to be true in the remainder of this Letter. We
then define an exact effective flipping ratio:

A related effective error bar o,s can also be introduced

using the law of propagation of errors. In the case of a
centrosymmetric crystal, the efkctive R,g is defined as

M, which is the related cosine Fourier component of the

sought magnetization density m(r).
The fundamental diSculty which arises for the acentric

subset stems from intricate coupling between M' and M"
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resulting from (I), rather than from a nonvanishing M".
The crux of our suggested procedure is to define an ap-
proximate effective flipping ratio:

R,'Il "=I +4q' (a'M'+a "M"),

where a'(K) and c"(K) are known. One readily finds

N' „N"a'= a"=
N' +N" N' +N"

(3)

which generalizes the case of a centrosymmetric reflec-
tion.

In this form, R,ir becomes a linear functional of m(r),
and I' and M" are now suitably decoupled. The reduc-
tion of R to such an R,g entails the only serious limita-
tion to our proposed procedure: An acentric refection K
can be kept in the data set only if )M(K) ( « )N(K) ), so
that R can be expanded in series Other. wise, it must be
ignored In pr. actice, we keep all the acentric measured
fiipping ratios within 0.6 and 1.4. The first neglected
term is then of tke order of I %

Consequently, retrieving m(r) from the data is tan-
tamount to solving a hugly undetermined linear system of
equations, which writes in matrix form,

Y(K) =A(K, r) X(r), (Sa)

where the different matrix elements write

Y(K) =R,ir(K) —I, X(r) =m(r),
and

(Sb)

X 'A [A'A] 'Y (6)

where 'A is the transpose of A. Finally, one obtains

I g g N'cosKr+ N "sin Kr Reir(K)
V tt g(K) I+a(K) 2q

where V, g, g(K), s(K), and f(r) stand for the volume of
the unit cell, the order of the space group, a degeneracy
factor, 1 for a centric reflection and 0 otherwise, and the
average over the space group operations for any function
f(r), respectively. See [10] for a detailed similar case,
which also features an extension incorporating experi-
mental error bars. Notwithstanding the production of
spurious correlation effects by the MNLS solution, the

N'(K) cosKr+ N "(K)sin Kr
N'(K )N'(K) +N "(K)N "(K)

and where 6 is the pixel size resulting from the discreti-
zation of the cosine and sine Fourier integrals over the
unit cell. Similarly to [3] and [9,10], the symmetry of
m(r) is automatically enforced by replacing the cosine
and sine terms by suitable averages over the space group
of the crystal.

One way to find a unique solution to (Sa) is to add the
extra requirement that X(r) should have the minimum

possible least squares norm (MNLS) X X [I I]. The
solution reads

new explicit formula mentioned above remains useful to
appreciate the largest features of the magnetization den-

sity m(r). The detection of smaller effects requires the
huge resolution enhancement resulting from the use of
maximum entropy (MaxEnt) [12], for which our PND
problem becomes a prototype once cast into (Sa).

Extensive simulations were carried out to test both the
MNLS and the MaxEnt procedures, from which the fol-
lowing conclusions emerge:

(i) Because our problem is linear, the use of Fourier
differences generalizes straightforwardly to the use of
efl'ective flipping ratio differences, with the same benefits
for both MNLS and MaxEnt. Because the signal-to-
noise ratio decreases in the difference process and is cru-
cial to MaxEnt, the relative benefit is less for this latter
case.

(ii) The restriction of the acentric total data set to its
centric subset can yield very wrong results when either a
model-fitting, MNLS, or MaxEnt approach is used. By
contrast, using the acentric subset alone produces much
more satisfactory results, especially when MaxEnt is
used. Some molecular crystals featuring free radicals
show mostly acentric reflections (e.g., 85% for tempone
and 96% for tempol). The related R values are all close
to I, making these compounds ideally suited for MaxEnt
analyses despite very small centric subsets.

We now demonstrate the capabilities of our suggested
procedures on a real system, metamagnetic UCoAl at
T 5 K [13], which we have selected since the magne-
tism of uranium and related compounds still arouses con-
siderable interest [14]. The nuclear structure is charac-
terized by the space group P62m, and the atoms lie either
in the Z 0 or the Z —,

' section [Figs. 1(a) and 1(b)].
There are two nonequivalent Co sites, Co(l) and Co(2).
Because of a very strong anisotropy, all the ordered mag-
netic moments are parallel to the u=c crystal axis. We
consider first a simulated and then two real data sets, cor-
responding to two distinct values of the magnetic field
(H =1.7 and 5 T). The set of Bragg peaks is identical for
the three cases, corresponding to a complete set of flip-

ping ratios for the hkO and hk I except for the 100, 600,
301, and 401 peaks, the nuclear structure factors of
which are too small. Whereas Wulfl' et al. restricted
themselves to the 11 unique centric reflections in [13),
our present study takes 39 centric plus acentric reflections
into account, some of which we remeasured in order to
improve their statistical accuracy.

Because the spatial resolution is very poor along c, pro-
jections along c must be considered rather than sections.
Their retrieval remains a 3D process, the projection re-
sulting from the sum over all sections [4,5].

In order to rate our MNLS and MaxEnt procedures, a
first mock data set was generated by a preliminary U and
Co monopolar refinement of the 5 T data. The calculated
R,g values were kept together with the experimental error
bars. A second mock noiseless data set was generated by
keeping 90% of the fitted uranium monopole contribution.
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FIG. l. (a), (b) Schematic sections of UCoAl corresponding
to Z 0 and Z &, respectively, and showing the locations of
the atoms of the title compound. (c) Generalized inverse

Fourier transform (minimum norm least squares) reconstruc-
tion of the projected magnetization density pertaining to the
mock data set described in the text. Similarly to the
diA'erence-Fourier technique, part of the simulated U isotropic
contribution (0.330@a) was subtracted from a mock data set

[U: 0.368@a, Co(1): 0.058@a, Co(2): 0.076pa] in order to
reconstruct smaller features of a similar size. Note the absence
of spurious splitting of the U peak, irrespective of the amount of
the subtracted isotropic U contribution.

FIG. 2. (a) MaxEnt reconstruction counterpart of the
MNLS solution displayed in Fig. l(c) and pertaining to the
same mock data set. (b) Diff'erence MaxEnt reconstruction for
the real data set at 0 =5 T. The fitted isotropic U contribution
of 0.360pa was subtracted from the first R,a real data set. (c)
DiAerence MaxEnt reconstruction for the real data set at
H = 1.7 T. The smaller fitted isotropic U contribution of
0.306pg was subtracted from the second R,tr real data set.
Note in particular the splitting of the residual U magnetic den-

sity, which directly demonstrates the related magnetic anisotro-

py

We used the difference mock data set as our test case,
thereby generalizing the Fourier diff'erence procedure to
eliminate truncation effects as much as possible. The 110
reflection was omitted because our acentric expansion is

not valid in this instance, the related flipping ratio
(R= 1.9) lying outside the [0.6, 1.4] interval mentioned
earlier. The MNLS solution, shown in Fig. 1(c), reveals
the simulated Co moments nicely. Note the spurious
truncation eA'ect close to the Al site. The MaxEnt solu-

tion, displayed in Fig. 2(a), is much enhanced. The
spurious remnant Al-like contribution sets the limit to our
MaxEnt procedure: Our result is as good as our data
(S/N ratio, K set) and our linear acentric approximation.

The above spectacular MaxEnt result prompted us to
apply the same strategy to our two real data sets. The
fitted monopolar uranium contribution was first subtract-
ed from the real data, both for our 1.7 and 5 T data. The
two ensuing MaxEnt projected magnetization density
maps are shown in Figs. 2(b) and 2(c). Both the U and

the Co(2) moments are found to increase with the mag-
netic field, and to be anisotropic: The equicontours of the
Co(2) density (not shown) have a triangular shape and
the peak of the U density is split. By contrast to the
Co(2) moments, the Co(1) moments are found to be in-

sensitive to the applied magnetic field and without a no-

ticeable anisotropy. These results compare very well [15]
with a U, Co(1), and Co(2) multipolar refinement using
the standard MOLLY program adapted to refine on the
R,b,

—l values and to allow for possible magnetic defor-
mations compatible with the crystallographic symmetry
[16]. Note that the latter refinement alone is insufficient
to conclude since (i) the resulting parameters are strongly
correlated and (ii) the choice of the refined parameters is

ad hoe and greatly conditions their values.
In summary, we propose two procedures to tackle the

acentric PND case: MNLS and MaxEnt. %e have ap-
plied them successfully to metamagnetic UCoAl and dis-
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closed new physical results, substantiated by multipolar
refinement: (i) the Co(l ) and Co(2) are inequivalent

(Itcoi & pcoz) and (ii) U and Co(2) have anisotropic
magnetic densities and increase with a magnetic field.
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