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Raman Forward Scattering of Short-Pulse High-Intensity Lasers
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Raman forward scattering of short-pulse relativistic-intensity laser pulses is investigated. DiA'erential

equations which model the instability for arbitrarily large pump strengths are derived. Exact solutions
are obtained for a set of physically relevant initial conditions. The growth rate is found to asymptotically
approach zero for ultrarelativistic laser intensities. The relevance of the results to present experiments
and the limitations of the quasistatic equations are discussed.
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A fundamental phenomenon in laser-plasma interac-
tions is Raman forward scattering (RFS). In this in-

teraction an electromagnetic wave (too, ko) incident upon
a plasma scatters into two copropagating electromagnetic
sidebands (ta~ ~ too, k~+' ko) and a plasma wave (toe, k~)
RFS has the potential to generate relativistic electrons
because the resulting plasma wave (to~, k~) has a phase
velocity nearly equal to the speed of light c. As a result,
RFS has been actively investigated for nearly twenty

years because of its relevance to pellet preheat in laser
fusion [1,2], to cosmic ray generation in pulsars [3], and
to plasma accelerators and light sources [4,5].

Past theoretical research has primarily been concerned
with long pulse lasers interacting with plasmas of lengths
smaller than the pulse length and with laser intensities for
which eAO/mc (&I, where Ao is the vector potential of
the laser [1]. Consequently, only the temporal growth or
the steady state spatial growth was considered. There has

also been little experimental evidence [2,5] of RFS be-

cause of its relatively small temporal growth rate. The
development of the chirped pulse amplification technique
[6] has led to high-intensity lasers with pulse lengths
which are typically less than a Rayleigh length. In ex-
periments and applications with these lasers [7], the ef-
fects of spatial-temporal growth and relativistic pump
strengths will become important.

In this Letter we analyze the spatial-temporal growth
of RFS. %'e start from a set of equations valid for weak-

ly relativistic pumps. From these equations a single
differential equation for the plasma wave (to~, k~) is de-
rived. This equation is solved exactly for a relevant set of
initial conditions. The exact solution permits a precise
determination of the time at which the asymptotic solu-

tions obtained from the pole-pinch condition [8] are valid.

We next use the quasistatic equations to obtain the
growth rate for arbitrarily large laser intensities. Last we

comment on the implications of this work for present and

future experiments.
We emphasize that this work differs from two recent

papers by Antonsen and Mora [9] and Sprangle et al
[10]. Each numerically solved a set of quasistatic equa-
tions combined with the paraxial-ray approximation.
Each observed that the laser pulse breaks up longitudinal-

ly into beamlets of length 2tre/to~ after propagating
roughly a Rayleigh length. Each also attributed the
breakup to 2D effects. Upon examining the asymptotic
impulse response for the weakly nonlinear pumps, Anton-
sen and Mora argued that the number of e-foldings per
Rayleigh length depends only on the ratio of incident
power to threshold power for self-focusing and the pulse
length in units of c/ta~. However, the use of the
paraxial-ray approximation precludes direct forward
scatter and incorrectly models near forward scatter, while

the asymptotic response is invalid for near term experi-
ments. Sprangle et al. imply that breakup only occurs
when the relativistic self-focusing power threshold (P, ) is

exceeded. We show that for 4-wave RFS (forward and

near forward) the number of e-foldings per Rayleigh
length additionally depends on to~/ton. These results indi-

cate that beam breakup can occur in ID from RFS and

that it can occur for power less than P,. Furthermore, we

give an exact solution, rather than an asymptotic
response, for the evolution of RFS, calculate the growth
rate to all orders in eAtt/mc =au, and examine the validi-

ty of the quasistatic approximation.
We begin by making the 1 D quasistatic approximation

[11]. In this approximation a mathematical transforma-
tion is made from (x, t) coordinates to the (ttt=t —x/c,
r =t) coordinates, and tl/t)r derivatives are neglected in

the Auid equations but not Maxwell's equations. This is

valid if Auid quantities at a fixed position relative to the
front of the pulse, i.e., fixed y, do not change much dur-

ing the duration of the pulse. The resulting equations are
[11]
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tions more recognizable and provides the dispersion rela-
tion in the Galilean frame. We assume that the 8's can
be written as

(2) 80= —[kolp+(COO ko)&],

where g—= I+& is the scalar potential of the plasma
response, a is the vector potential of the electromagnetic
wave, and time is normalized to mz ', space to e/co~, and
current to enoc.

In RFS the density perturbations grow from noise so
we linearize Eqs. (1) and (2) to obtain

—2 a -a(l —y),8+ Br
2 2

2
+1 y- (4)

The quasistatic approximate equations differ from the ex-
act linearized equations in two places. On the right-hand
side of Eq. (3), n/y is replaced by 1

—p, and on the left-
hand side of Eq. (4) 8 /Bt~ is replaced by 8 /By, i.e.,
8/Br derivatives are neglected. In what follows, we make
the quasistatic approximation in Eq. (3) but not in Eq.
(4), giving

—2 a a(l —y),8+ Br

8 +2 8 8 +1 0
B~' 81I Br

(5)

We note that Eqs. (5) and (6) can be derived [12]
without making the quasistatic approximation. Later we
comment on how the inclusion of the 8/Br derivative in

Eq. (6) alters the result. This provides a condition for the
validity of the quasistatic approximation.

We next carry out a stability analysis of Eqs. (5) and
(6) by letting

ao;@ a+;q, a — Iea= e + e ++ e +c.c.
2 2 2

and

0 =
~ P,e' +c.c.,

where 8+ =8+ 80. Rather than letting the 8's contain
real and imaginary parts, we assume that each 8 is purely
real and derive a differential equation for the envelopes of

t

a+, a, and p, . This makes the relevant initial condi-

8+ = —[k+y+(e+ —k+)r], 8= —[kg+(e k)—r],
where (mo, ko), (co,k ), and (co,k) satisfy their own

respective dispersion relations. This leads to the follow-

ing set of differential equations:

Ba+
i 2k+

Bt
&oks + a+,

&O Ps

2

(7)

2

(10)
Br

where yo —=)ao)/J8ko is the well known temporal growth
rate [1]. Temporal growth occurs when there is transla-
tional invariance in the coordinate y. Purely temporal
growth is prevented when the quasistatic approximation
is made because the 8'/Br term is absent. We also note
that in the paraxial-ray approximation k — —k+ —ko
and 6 2ki resulting in yj 0 as k& 0. Therefore,
when the paraxial-ray approximation is used, the mis-
match term and growth rate vanish for direct forward
RFS, and near forward RFS is qualitatively different.

We solve Eq. (10) by performing a double Laplace
transform in r(e"') and y(e'~") because p, 0 for r (0
and @&0:

Ba
i2k— (8)

Br

80s . Bfs 0 yuo 0 —cl0
(9)i 2k — —i2k

BI/I Bt 2 2

where Ba ~/By was neglected compared to k ~ a+ and
k %Bay/Br, and 8&,/By was neglected compared to kp, .
The extra term on the right-hand side of Eq. (7) is a
mismatch term which results because the Stokes and
anti-Stokes waves cannot both be resonant simultaneous-
ly. In the purely 1D limit 6 2ko, while 6 2k~ if
k&z ) 2/ka. (Recall that the k's are normalized to ro~/c. )
We note that the 8$,/Bt term in Eq. (9) is absent when

the 8/Br derivatives are neglected in Eq. (4). For the
moment we neglect the mismatch term in Eq. (7) and
combine Eqs. (7)-(9) into a single differential equation
for p„

P, (r =O, y 0) iap, (a, y 0) i—PP, (r =O,P) —8—&,/Br(r =O,P) iap, (r =O,P)—, a,
a +aP+yo

(12)
n

Three initial conditions are required, namely, p, (r, @=0),p, (r =O, y), and 8&,/Br (r =0,y). We choose the simple yet
physically relevant set p, (r, y 0) p, (r O, y) & and 8&,/Br(r O, y) 0. This assumes that the noise source at
the head of the pulse is constant.

The solution for p, is determined by inverting Eq. (11)and is given [12,13] by
' n

&OH(y) [H(t) —H(r —y) ]csohy rO+H(t —y) P lz„(2yoJ(t —y)y)
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where 0 is the Heaviside step function, I„ is the modified
Bessel function of the first kind, and n is an integer from
0 to ~. We note that if the a'/ar term is neglected in

Eq. (10), the solution is

y, =yoH(y)H(r )Io(2yodr y) . (i 3)

It follows from Eq. {12) that purely temporal growth
occurs at a given position, y, until information originat-
ing at the head of the pulse arrives at y. This informa-
tion moves at the speed of light c in this Galilean frame,
because the plasma waves have zero group velocity in the
laboratory frame. After this time (r =y), quasistaticlike
growth occurs, i.e., growth in the variable d(r —ill)ill
=v ry The. refore, the quasistatic are reasonable when

coshyoiii' + I and when r » y, where y is the position
at the back of the pulse. We also note that the coshyqr
growth is a result of p being uniform in space at r =0
while the lo(2yod(r —y)y) term is the response to the
boundary condition at y=0.

When the pole-pinching (stationary phase) criterion is

used, p, is found to grow asymptotically as exp(2yodr p)
initially and as exp[(3' 2' 3/4)yPr ty' ko ] when

the mismatch term in Eq. (7) eventually becomes impor-
tant. Similar pole-pinch expressions have been obtained
by others [10]. We call the first type of growth 4-wave
RFS and the second type nonresonant [141 4-wave RFS.
However, by examining Eq. (12), we find that the num-
ber of e-foldings, N, which occurs before the mismatch
term becomes important, is N yr/2ao2. Therefore, for
pulses many c/ro~ long, the so-called 4-wave RFS growth
continues until saturation. We note that RFS eventually
passes through two other regimes of growth. When
(t)/t)y)P) kp the higher order terms need to be kept in

Eq. (9). The resulting asymptotic growth is generally re-
ferred to as strongly coupled RFS. Eventually k+(rI/
r)r)ay ((k /k+)a+. At this time the anti-Stokes can
be completely neglected and the asymptotic growth scales
as 3-wave RFS. Antonsen and Mora [9] have identified

analogous regimes for the purely temporal analysis.
To make a connection with the work of Antonsen and

Mora [9] and Sprangle er al. [10], we rewrite the 1D
growth in terms of the relativistic self-focusing power
threshold [15], P, =a)~ /32, and the Rayleigh time,

r~ ——korr /2, where rr is the light wave's spot size. This
gives the asymptotic growth as exp [[2( P/P)(r/&R)
xy/roo]'~]. Therefore, the exponentiation can be ex-
pressed in terms of 2D quantities (P, and r R), although
the analysis and the resulting beam breakup are strictly
1D. This differs from the results of Antonsen and Mora
by the extra mp

' factor. We identify the scaling of An-
tonsen and Mora as 3-wave RFS. Furthermore, for
the paraxial-ray approximation, h =2k &/k, resulting
in asymptotic growth as exp[(2' 3'~ 3/4)(P/P, )'~ (&/
rg) y' (k&o) ~ ]. Assuming a characteristic value
for k ~ of I/o gives growth which scales similarly to those
obtained by others [16] for whole beam instabilities of

finite width pulses.
We next consider modifications to yp for arbitrarily

large ao. We return to Eqs. (I) and (2) and assume that

g =gp+8g where Bg((gp. This leads to the following set
of equations:

a'—
2~ ~

A~=
gp

(i 4)

Bg 1 1 z 2, Sg+ =—,(i+A —go).
Lo 2 go

(is)

Guided by the weakly relativistic case, we could add
r)/8r derivatives into Eq. (I S) but, without further
justification, we will not because the effect of this term is

already known to be replacing r with ~ —y and the
coshypr term. As before we let

and

~p i' ~ + i8+ ~ — ieA~= e + e '+ e +c.c.
2 2 2

Bg = (bg, /2) e"+c.c. ,

(16)

(i 7)

where the dispersion relation for each 8 is appropriately
modified and go = I+Ao/2. The fact that the harmonics
of Ao and go can be ignored has been previously justified
[17]. The ratio of the third harmonic to the fundamental
scales as +, , (co~/coo)Ao/(I+Ao/2), which is always
&&1. We neglect the higher order 0+ n8p couplings be-
cause they are nonresonant. Substituting Eqs. (16) and
(17) into Eqs. (14) and (IS) and keeping the leading or-
der terms yields

aA+ bg, A,
i2k y

oir 2 Xo2

BA — bg, Ao+
i2k

tI & 2 goz

—i 2k 8g, =—
2 (Aii A++AoA —) .t) I I

ay
' 2„,

{18)

(i9)

(20)

We combine Eqs. (18), (19), and (20) into a single

equation for Bg„

r)
I'k ~ps-0,

iII r

where

2=-
yn1 =

2
-

1/2
1 ~o

8ki2i (I+Ao'/2)'
(2i)

is the nonlinear growth rate. The nonlinear evolution of
RFS can be obtained by simply relacing yp with y„1 in Eq.
(i 3).

An interesting feature of y„1 is that it asymptotically
approaches 0 as Ap . As a result, there can be
strongly coupled temporal growth of RFS because the ra-
tio y„ilro~„i I/2ko«1 as Ao ~. The physical reason
can be seen as follows: The ponderomotive force is pro-
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amplification of any noise by a factor of 10 . Thus, it
would appear that RFS could pose a problem for recom-
bination x-ray lasers.
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FIG. 1. The growth of 4 wave RFS for (a) ap 0 8,
top/t»t, 10, y~ 150, and (b) ap 0.1, top/totp 5.7, and

150. The dotted line, dashed line, and solid line represent the
asymptotic, quasistatic, and exact solutions, respectively.

portional to F~ Vyca (I/y)VAp2 where VAp is the lowest

order ponderomotive force. As Ap increases the pondero-
motive force decreases from the lowest order value be-

cause y increases and Vcx:k decreases. The decrease in k
occurs because to/k must still equal c and co tot, „~

=co~/y. The ponderomotive force therefore saturates.
However, the Raman coupling is proportional to VF~
which asymptotically decreases as k decreases. The scal-

ing of the nonlinear growth rate Eq. (21) has been
verified in particle-in-cell simulations [12].

To illustrate the consequences of the results in this
Letter, we consider two examples. The first is for the
current experimental conditions at the (5 J)/(0. 8 ps)(l
pm) laser at Livermore [7]. We assume the laser pulse is

propagated through a plasma with density n, —10'p

cm with a spot size of cr =20 pm. These numbers cor-
respond to ap=0. 8, top/toe =10, tir =150, and rtt =1.5
mm/c. In Fig. 1(a), we plot the exact solution, the quasi-
static solution, and the asymptotic solution as functions of

This plot demonstrates that using the asymptotic ex-
pression can significantly overestimate the number of
e-foldings. However, after propagating for a time
=300cos ', which corresponds to 0.3 Rayleigh length, the
instability has amplified by 10 and should be observable.

The second example is for parameters relevant to pro-
posed recombination x-ray lasers. A condition for gain is

that the plasma produced by the ionizing laser must have
a temperature less than 50 eV. Therefore, RFS needs to
be prevented because it produces hot plasmas. We use
1=2.2X 10' W/cm, kp=0. 25 pm, a pulse length of 114
fs, and n, =5 x 10 cm . These parameters give ao
=0.1, top/to~ =5.7, and Itr =150. For suIIicient gain, the
laser must propagate [18] O. I cm which corresponds to a
r =4500. In Fig. 1(b) we show that the three types of
solutions are nearly equal and that we can expect an
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