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Spiral Waves in Liquid Crystal
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%'e report experimental investigation and theoretical interpretation of the formation of spiral
waves in a nematic liquid crystal subjected to a rotating magnetic field and a high frequency electrical
field.

PACS numbers: 47.20.Ky, 61.30.ad, 61.30.Jf

Microscope
object i ve

X

/ x.~ ~ ~ - xp Qa

Glass
plates

Variation

Flux
lines

larizer

FIG. 1. Scheme of the experiment. The ITO treated glass
plates filled with homeotropic nematic are positioned in the
air-gap upper region of a high flux permanent magnet allowed
to rotate around the polarizing microscope axis. The mag-
netic field is varied by the adjusment of the distance between
the nematic slab and the upper surface of the magnets.

The application of a magnetic Beld on nematic liq-
uid crystal leads to the formation of walls [1]. These
walls separate domains of difFerent orientation of the
molecules. It is reported in [2—4] the spontanixius trans-
formation of some of these domains walls into moving
walls and spiral waves. We shall refer to the wall de-
scribed in [2,3] as the Brochard-Leger (BL) wall. In [4]
the qualitative description of the structural transition of
the BL wall into the moving wall was given. In this Let-
ter, we present experimental results which report a tran-
sition of the BL wall and the formation of spiral waves
comparable to the ones described in [4]. Furthermore, we
derive a theoretical quantitative model from the nematic
elasticity theory which falls in good agreement with the
experimental results. In particular, we will interpret the
transition of the BLwalls to moving walls as a nonequilib-
rium Ising-Bloch (IB) transition [5). Similar ideas have
been applied to reaction-difFusion systems [6] in which
domain walls and spiral waves are also observed.

The experiment (Fig. 1) consists of a nematic liq-

uid crystal sandwiched between two glass plates in a
homeotropic geometry (molmules perpendicular to the
glass plates) subjected to a magnetic field H parallel to
the plates and an electric field perpendicular to them.
The magnetic field can be either fixed or rotating in

the (x, y) plane at a frequency u around an axis per-
pendicular to the plate while the electric field E paral-
lel to the z axis oscillates at high frequency in order to
avoid convection efFects. A motor rotates a plate at a
frequency u supporting two small permanent Nd-Fe-B
magnets, which produce a magnetic field of G.5 T be-

tween the poles. The homeotropic anchoring is achieved

by treating our glass plates with lecithin. The thickness
d of the sample was in general about 75 pm. The liq-

uid crystal used is MBBA, nematic at room temperature
with negative dielectric anisotropy. More experimental
details can be found in [7].

The experiment of [4] reports several striking results as
the main parameters of the experiment; the intensity of
the magnetic field and the frequency of rotation are var-
ied. Stationary BL are transformed into moving solitons
when ~ is increased beyond a certain range Two-ar. m
spiral waves are found to be stable in a large parameter
space. The core of these spiral waves is an umbilic of
topological charges +1 or —1. The wave number of the
+1 spiral wave is difFerent from the wave number of the
—1 umbilic. As a result the spiral with the larger wave
number takes over the one with the smaller wave number.

We report the observation of two-arm spiral waves
(Fig. 2) and also the observation of an Ising-Bloch tran-
sition of the BL wall with a stationary or rotating mag-
netic field as the intensity of the electrical field is var-
ied. The originality of our experiment is in the use of
molecules with a negative dielectric anisotropy so that
the hommtropic state c~ be destabu~ by the appli-
cation of the electrical Beld. As a consequence, we can
operate in the vicinity of the R'eedericksz [S] tradition:
This enables us to do a weakly nonlinear analysis of the
transition.

When a stationary horizontal magnetic Beld is appijed
to the sample, the acmatic director tends to align along
the field direction. Because of the homeotropic boundary
conditions which impose the initial vertical alignment,
an elastic restoring torque is also present. The balance
between these two efFects de6nes the onset of the Freed-
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FIG. 3. Photograph of a spiral obtained with the setup of
Fig. 1 in the parameter region corresponding to region C of
Fig. 4.
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FIG. 2. The experimental and theoretical phase diagram
of the static Ising-Bloch transition (ur = 0) in the (V, H )
parameter space with V = dE. The dark lines have been
obtained using Eq. (2). The light grey line has been obtained
experimentally using the setup of Fig. 1.

ericksz transition. The order parameter for these experi-
ments is the projection of the director on the (x, y) plane.

Above the threshold of the Freedericksz transition, BL
walls [2,3] in which the director points along the z axis

appear. In analogy with ferromagnetic systems [9,10],
we shall refer to BL walls as Ising walls, since the order

parameter vanishes at the center of the wall. To be con-

sistent with this previous definition, walls in which the
director is never pointed along the z will be referred to
as Bloch walls. The effect of the electrical field used in

[7] is to induce an Ising-Bloch transition of the BL wall.

Such a transition is produced by the effect of the electri-

cal field, which forces the molecules to reorient toward a

plane perpendicular to the z axis. In Fig. 2 we show an

experimental measurement of the IB transition for a BL
wall.

As yet understood in terms of general argument in [5]
and qualitative argument in [4], the effect of the rotation
is to induce a movement of the Bloch wall. Bloch walls

may be connected by a line (umbilic line) in which the
director points towards the z axis. This configuration

naturally evolves into a spiral wave when subjected to a
rotating magnetic field. We show in Fig. 3 a photograph
of a spiral wave obtained using the experimental setup
described in Fig. 1.

Our theoretical approach assumes that the director is

only weakly tilted from the z axis. This condition is

fulfilled only in the vicinity of the Freedericksz transition,

a condition which is not fulfilled in [4]. In this condition
it is legitimate to neglect backfiow effects. Furthermore,
the magnetic field is considered as a small perturbation
of the main electrical field. The dynamical equation for

the director, n, reads [8]

bI'
pinx nq ———n x

Il

where pi is the rotational viscosity and the Frank free

energy reads

1F = — dv[Ki(V n) + Ks(n V x n)
2

+ K3(n x V x n) —y, (H n) —~,(E n) ],

where H = H [cos(ut)x —sin(ut)y], E = Ez, and

Ki KQ K3 are the elastic constants. The linear stability
analysis of Eq. (1) reveals that when E ) E„which will

be defined later, the homeotropic state n = z becomes
unstable.

It is then natural to make a vertical Fourier expan-
sion in which we retain only the first unstable mode. It
can easily be shown that in the vicinity of the Freeder-

icksz transition the higher order vertical distortion modes

are damped and therefore follow adiabatically the first

unstable mode. Let us choose for an order parameter,

A(x, y) = X(x, y) + iY(x, y), which measures the de-

viation from the homeotropic state, where X(x, y) and

Y(x, y) are defined by n~ = X(x, y) cos( &z),

7l~ + Ay
2 2

n„=Y(x, y) cos —z, n, = 1—
2

and d is the thickness of the sample. Direct replacement

of this ansatz into Eq. (1) leads after some algebra to

A, = pA+pAe '* '+ ~&+ ~2
2

9' A

A„„—a/A/3A,

where g = x —iy) V = 0~~ + yy = gq) q = g + &y)
2

p = ~~H3 —e Ez —K3~&, p = ~3H3, a = 3(Ki—
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~Ks) ~4
—4e E, and A stands for the complex conju-

gate. This equation is very similar to the one studied in

[5] except for the term A„~,which is proportional to the
anisotropy of elasticity (Ki —K2).

For simplicity, we first discuss the case Ki = Kz.
Equation (2) simplifies after the transformation A -+
Ae '~' to

sin(2b) =
'y

us state

2H c F2

H
C

FIG. 4. Stability analysis of the phase diagram of Eq. (3)
in the (H, u) parameter space at a fixed value of E & E,
Region A: The homeotropic state A = 0 is stable. Region B:
The synchronous state in which BL walls are stable. Region
C: The synchronous state in which the moving Bloch walls are

Hstable. Region D: The asynchronous state in which cu & "
271

The homeotropic state A = 0 loses stability through a pitch-
(+2—Z2) 2M2

fork bifurcation when H, (cu, E) &
' " +Xa Xo~o(&2 —@~)

e~(E —E )for u & u, = ~ (line Fi), or a Hopf bifurcation when

H, (u, E) & 2'
„

for &u & u, (line F2), wall 2.

piAi ——(p, +ipi&u)A+ pA+ KiV' A —a]A] A.

Let us take E to be slightly smaller than E,

~

~

~

Note that the dielectric anisotropy e, is neg-

ative. The linear stability analysis of Eq. (3) yields
that the homeotropic state A = 0 loses stability when
H & Hi(~, E) (Fig. 4).

Let us now place ourselves in the synchronous region
(Fig. 4) in which the director rotates at the same fre-

quency as the magnetic field (u & xz ). In this region
there exist two stable homogeneous solutions of Eq. (3)
which read d = dV e+r;" e's where 6 is deheed hy

The Ising wall (BL), a heteroclinic solution which joins
those two solutions, reads

/2g2 H4 + g e (E2 E2)H2 e2 (E2 E2)2

Proceeding as in [5], we obtained that the velocity ti of
the Bloch wall is

3Q'Y '7i~
V ~ Kited

p + p cos(2b)
(5)

Note that when pi ihi2 = p2 the velocity cannot be defined
since we get into the asynchronous regime in which the
size of the wall diverges.

In the more realistic case when Ki g K2, there is no
simple transformation that reduces Eq. (2) to a time in-

dependent equation like Eq. (3). The anisotropy of elas-
ticity induces an oscillation at the core of the BL wall.
This oscillation which changes the size of the wall can
be understood as a continuous periodic change of splay-
bend BL walls to twist BL walls. As yet understood
qualitatively in [4], a more dramatic implication of the
anisotropy of elasticity is to difFerentiate the size and the
shape of the umbilics of opposite topological charge. As
a consequence, in the nonequilibrium case (u g 0) the
+1 and —1 umbilic selects a different wave number. This
seems to be a generic feature of nonequilibrium systems
for which the wave number selection mechanism is in-

timately related to the typical size of the vortices. We
have investigated the asymmetry between the defects by
placing ourselves in the parameter region corresponding
to region C of Fig. 4. Numerical simulations of Eq. (2)
show that a +1 umbilic selects a larger (smaller) wave
number than a —1 umbilic when Kz & Ki (Fig. 5)
(when K2 & Ki). We now interpret the experimental
results concerning the IB transition with a static mag-
netic field u = 0, H = Hx, and E = Ez. This static
IB transition was introduced in [9,10] in the context of
ferromagnetic systems. Analytical solutions of the BL
wall, perpendicular to the magnetic field (splay-bend BL,
K = Ki, ( = x) or parallel to the magnetic field (twist-
wall K = Kq, ( = y), read

X = gp+ptanh (( p+pl
2K )'

The splay-bend BL wall loses stability when E~
K

y H — '&, towards static Bloch wall where

@+pcos2b ( p+pcos26
tanh

~
x ie'.

a
~

2Ki

It loses stability entering region C of Fig. 4 towards a
moving soliton (Bloch wall) when
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where A = Re'e, Rz = p+ K&('78)z + icos(28), and
Kq ——Ks. This last equation, used in [4], gives a good
approximation of the dynamics of the Bloch walls but
cannot describe the spiral wave due to a phase singularity
which de6nes the center of the spiral.

In conclusion, motivated by results [2-4,7] we have ex-
perimentally investigated the static Ising-Bloch transi-
tion and the formation of spiral vraves. We related all
the measurable physical quantities of the experiment in

a compact which falls in good agreement with the exper-
imental results.

FIG. 5. Numerical simulation of Eq. (2) showing the real
part of A. The asymmetry between the +1 and —1 spiral
wave is shown by the diBerence of the wave number. Nu-
merical simulations were performed in region C (Fig. 4) of
the parameter space using the elastic coefBcients values cor-
responding to MBBA at room temperature. The numerical
simulations used a 256 grid and a 6nite difFerence method
with 6x = 0.5 and Bt = 0.005.

pg8t ——Kg% 8 —p sin(28) + pg~, (6)

K2(gl + SKg/Ks —1)
16K' —Ks (/1 + SKg/Kz —1)

The stability condition for the twist wall is obtained by
interchanging Kq and Kz in the expression for n. The
positivity of the elastic constant implies that 0 ( n ( 1.
These predictions (Fig. 2) are in good agreement with
the experimental measurement of the Ising-Bloch tran-
sition of a splay-bend BL wall. To end this Letter we

remark that far from the umbilics the phase approxima-
tion leads to
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