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Controlling Spatiotemporal Patterns on a Catalytic Wafer
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A video-feedback control experiment which successfully suppresses chaotic temporal fluctuations of
thermal patterns on a catalytic wafer is reported. A Karhunen-Loeve scheme is used to identify the
dominant spatial structures from video imaging and estimate the low-dimensional temporal dynamics.
The projected dynamics shows that the spatiotemporal chaos is due to an intermittent chaotic attractor
near a homoclinic orbit. The control strategy is then simply to stabilize the hyperbolic fixed point at-
tached to the homoclinic orbit with a local model feedback control.

PACS numbers: 05.45.+b

Ott, Grebogi, and Yorke [1] recently suggested that
chaotic behavior can be suppressed if one can utilize feed-
back control to stabilize an arbitrary unstable periodic or-
bit or fixed point of the system. The approach is to force
the flow to converge to the stable manifold (eigenvector)
of the desired “set point”—a periodic orbit or a fixed
point. To estimate the unstable eigenvector such that the
flow will have no projection in its direction after the con-
troller is activated, a delayed-embedding technique is
used to estimate the linear dynamics near the set point.
Their subsequent feedback control technique is not dis-
similar to the classical pole-placement and dead-beat con-
trol strategies. This chaos control scheme was successful-
ly implemented to reduce chaotic behavior to periodic os-
cillations in a buckling ribbon [2], in cardiac arrhythmias
(3], and in a Belousov-Zhabotinsky reaction [4]. Howev-
er, the original chaos control strategies to stabilize a
periodic orbit or a fixed point are designed for “lumped”
systems with no spatial dependence or for effectively
lumped systems with simple and regular spatial struc-
tures. For example in the buckling ribbon experiment,
even though the temporal dynamics is chaotic, the only
excited spatial mode is a simple buckling mode. Most
realistic systems are distributed ones, however, which ex-
hibit spatiotemporal dynamics with pronounced and com-
plex spatial structures. The control of such spatiotem-
poral dynamics remains largely an open problem. Poten-
tially the most important example is the stabilization of
plasma instabilities for better plasma confinement in
tokamak fusion machines [5]. There are two reasons why
successful control of distributed systems remains elusive
and both are related to their infinite dimensionality. It is
difficult to identify the partial differential equations that
describe their spatiotemporal dynamics (lumped systems
are described by finite-dimensional ordinary differential
equations) and it is difficult to control the infinite number
of modes. In plasma control, efforts to stabilize a partic-
ular mode often destabilize other modes. In some rare
examples where spatiotemporal chaos has been stabilized,
typically only one or two eigenvalues in the infinite-
dimensional spectrum are unstable. McDermott and
Chang [6] used a proportional controller to stabilize the
fixed point of a distributed autothermal reactor and

Singer, Wang, and Bau [7] used a bang-bang controller
to stabilize a chaotic thermal convection loop. The exten-
sive modeling effort by McDermott and Chang for the
first system shows that the fixed point has a lone unstable
eigenvalue and the convective loop, which is described by
the Lorenz equation under idealized conditions, can be
adequately described by a three-dimensional dynamical
system. Even though these specific distributed systems
are more amenable to control stabilization, it is difficult a
priori to determine whether the unstable spectrum of a
potential set point in a spatially distributed system is low
dimensional. In fact, even the unstable fixed point or
periodic orbit, about which linearization is carried out to
obtain the spectrum, is difficult to determine a priori.
This requires an elaborate nonlinear model identification
scheme for spatiotemporal dynamics.

The identification problem associated with a distribut-
ed system is seen when one applies the delayed-em-
bedding technique to a time series from a single point
sensor. Chen, Wolf, and Chang [8] have recently exam-
ined the viability of this identification scheme for spa-
tiotemporal chaos exhibited by thermal hot spots on a
catalytic wafer. Such thermal patterns have been shown
by Wolf and his co-workers to exhibit very interesting
spatiotemporal dynamics using IR thermography and
other techniques [9]. In an effectively lumped system like
the buckling ribbon experiments, the spatial structure is
so simple that time series taken from sensors located at
arbitrary locations on the ribbon would yield identical
temporal dynamics. The rich spatial structures of the hot
spot dynamics described later in this Letter were shown
to render the delayed-embedding technique inaccurate.
Time series from different locations on the wafer yield
different Lyapunov exponents and the leading exponent
does not converge with respect to the embedding dimen-
sion [8]. It is hence clear that distributed dynamics can-
not be captured with a single probe in general and multi-
ple sensors over the entire domain must be used. For
moving structures with steep spatial gradients, fine spatial
resolution over a large domain is required and dense
two-dimensional (or even three-dimensional) sensor ar-
rays, such as those offered by video imaging in our exper-
iment, would be required. The extension from a zero-
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FIG. 1. Projected dynamics from the video tape in the phase
space spanned by the first two Karhunen-Loeve modes. The
fixed point a* and its eigenvectors €, and ¢, are shown.

dimension sensor to two- or three-dimensional distributed
sensors immediately implies a tremendous increase in
data points—a total of 105x68 pixels exist for each
frame of our video and each pixel can represent eight pos-
sible colors. This implies that the construction of an ap-
propriate dynamical system, or even deciphering basic dy-
namic characteristics like the Lyapunov exponent, would
be difficult; not to mention the actual application of feed-
back control with so many output variables. Even the
on-line, real-time processing of the data during feedback
control is a significant hurdle. It is clear that some form
of data reduction is required.

If the dynamics is dominated by many nearly indepen-
dent spatial modes, which interact intermittently with lit-
tle spatial coherence, the spatiotemporal dynamics of the
distributed system is then truly infinite dimensional, or
nearly so. There is then little hope of describing it with a
low-dimensional dynamical system. Data reduction of
the measurements from the distributed sensors and con-
trol stabilization are doomed to fail. There is, however,
some distributed systems which exhibit low-dimensional
temporal dynamics. Their spatiotemporal behavior is
typically dominated by a few distinct coherent structures.
Because of the spatial migration of these structures, the
low-dimensional dynamics cannot be deciphered from the
delayed-embedding analysis of a single-probe measure-
ment. However, a new Karhunen-Loeve technique [10]
can now extract it from distributed measurements. In
our earlier experiment [8], we have used this technique to
show that the spatiotemporal dynamics of hot spots on a
Rh/SiO; catalytic wafer for CO oxidation can be inter-
preted as a Melnikov-type bifurcation of a homoclinic or-
bit in a five-dimensional phase space. The wafer is
housed in a reactor and the gas reactants, CO and O3, are
fed into the reactor from a single feed. The effluent gas
exits diagonally from the feed and is sent to an infrared
analyzer which records continuously the product CO;
concentration. There is an infrared transparent CaF;
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FIG. 2. The temperature field image on the wafer corre-
sponding to the fixed point of Fig. 1. Each curve corresponds to
an isotherm and the isotherms are 10°C apart with the max-
imum temperature at about 150°C. The feed comes in from
the lower left corner.

window to the reactor and the temperature field on the
wafer is monitored by an AGA 782 infrared camera [9].
Each frame of the video tape can be accurately represent-
ed by five coefficients of the Karhunen-Loeve expansion.
This corresponds to a data-reduction ratio of 1428 to I:
The projected trajectory from the video tape is shown in
the phase space of the first two coefficients in Fig. 1. The
intermittent departure from the unstable fixed point a* is
evident. The temperature field corresponding to the fixed
point shown in Fig. 2 has a hot spot near the gas feed.
The hot spot departs from this position intermittently and
takes a tortuous path around the wafer before returning
to the position in Fig. 2. Its wandering path, especially
near the fixed point, is perturbed by high-frequency and
localized fluctuations which are captured by the higher
modes in the Karhunen-Loeve expansion. These are the
fluctuations required to render a homoclinic orbit into a
strange attractor according to the Melnikov mechanism
(see Ref. [8] for more details).

We begin by decomposing the pixel signal z(i,;) (1) of
the video snapshots by the empirical eigenfunctions
w(i,j) from the Karhunen-Loeve technique [11]

M
G, ))) = Zlam(t)w(i,j) (1)

and obtain the open-loop dynamical system
a=f(au), (2)

where the overdot denotes time derivative. The scalar u
is the input or manipulated variable which, in our experi-
ments, corresponds to either the CO feed rate or the ratio
of the CO and O, feed rates. In the experiments, both
flow rates are controlled by mass flow meters. The scalar
u is reduced such that u=0 corresponds to the nominal
(open-loop) flow rate. Because the Karhunen-Loeve
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method is so efficient in capturing the low-dimensional
dynamics, we find that M <5 is sufficient in all our ex-
periments to ensure 90% resolution [11]. Since the
Karhunen-Loeve technique is based on the time-averaged
video frame, which does not necessarily represent the un-
stable steady state of the system, a =0 is not a fixed point
of (2). We can hence estimate the fixed point a* of the
map (2) by a Newton-Raphson iteration with the local
tangent map approximation of (2) constructed from the
nearest neighbors [8]. However, for the projected trajec-
tory shown in Fig. 1, the location of the fixed point can be
determined accurately by inspection. The map is then re-
duced with respect to a*,

¢=Ac+Bu+glcu), (3)

where c=a—a”* and g(c) represents the nonlinear part
of the map, g(0;0) =0. The estimation of f and g can be
carried out using a singular-value decomposition tech-
nique [11]. However, because our chaotic attractor origi-
nates from a homoclinic orbit attached to a hyperbolic
fixed point, we can suppress the spatiotemporal chaos by
simply stabilizing the fixed point using linear feedback.
For modal feedback control [11], this requires only infor-
mation on the Jacobian A =8f/da(a*,0), provided the
system is linearly feedback stabilizable, which will be
defined more explicitly later. The vector B=09f/du(a*,
0) also does not have to be estimated. Consequently, the
stable and unstable eigenvectors of the fixed point, which
can be obtained by inspection from Fig. 1 or from a more
elaborate estimation scheme [11], and the two eigenval-
ues, which can be easily estimated from a(¢), yield all the
required information on A, and explicit information of f
and its derivatives is not necessary to obtain A. After a
similarity transform ¢=Tz where the columns of T are
simply the eigenvectors of A shown in Fig. 1, we obtain
the canonical form

Z=Az+Du, 4)

where A is a diagonal matrix containing the eigenvalues
and the vector D is simply T ~'B. From Fig. 1, it is clear
that only the first eigenvalue A, in A is in the right half of
the complex plane.

Our strategy for suppressing the chaotic behavior is to
use feedback control to stabilize A, as first suggested by
Ott, Grebogi, and Yorke [1]. We shall, however, use a
different continuous time, modal feedback law. It is clear
from (4) that the lone unstable mode can be stabilized if
one chooses

u(t)=—kz|=—kc-é|=—k(a—-a*)'é|, (5)

where & is the controller gain and €, is the first left (ad-
joint) eigenvector of A or the first row of T~!. As men-
tioned before, T, T ™!, and hence é; can be easily es-
timated from Fig. 1. With this single-mode feeback, the
closed-loop eigenvalues can be shown to be u; =i, —kD,
and u;=A; such that only the first mode is affected by

open loop
2.0
1.8
Q16
S
01.2—
1.0+
0.8
T T T T T
o] 200 400 600 800 1000
t (sec)
1.8 /
1.6
1.4 -
g 1.2
o 1.0_
S sl controlled
0.6
0.4
T T T T T AL
(0] 100 200 300 400 500 600

t (sec)

FIG. 3. Suppression of chaotic fluctuation by modal feed-
back. The controller is turned on at the point marked by the
arrow.

feedback. The sign of the controller gain can then be
determined empirically such that kD;>0 and the first
mode is stabilized. Hence, linear stabilizability corre-
sponds to a nonzero D) in our case, and the vector D does
not need to be estimated since kD; > 0 can be ensured by
a single experiment. The decoupling of the stable second
mode (in fact, all other stable modes) exists only if a*
and € in (7) are known exactly. Estimation error will
produce some coupling but, as long as k is not too large,
the stable spectrum will not be destabilized [11]. Some
tuning of k is hence necessary. The projection a,,(z)
=(z(i,j),¥,(i,j)) in the feedback law is the bottleneck
step in the feedback scheme. It involves (105%6)%x M
operations per time step after the empirical eigenfunc-
tions ¥,,(i,j) have been determined and stored on-line.
Our present frame-grabber software requires about 2 sec
for computation and storage. The flow valve actuator
contributes a 2 sec delay and the time required for the
reactants to reach the reactor from the valve is about 1
sec. This adds to about a 5 sec delay. Although this is
still small compared to the 100 sec characteristic time for
the uncontrolled system seen in Fig. 3, it is significant to
induce some fast jitters to the closed-loop dynamics. In
Fig. 3, the suppression of the periodic and chaotic hot
spot dynamics by feedback control as seen at the effluent
CO; concentration is shown. A small-amplitude oscilla-
tion with a small period close to the delay is seen after the
controller is activated to manipulate the CO feed rate ac-
cording to (5). Consequently, the delay has prevented us
from completely stabilizing the fixed point. Nevertheless,
it has achieved significant suppression of the temporal
fluctuation. We have verified that the delay is responsible
for the small fluctuation by introducing additional delay
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FIG. 4. Prevention of extinction by feedback control due to a
large pulse perturbation of the oxygen feed.

to the feedback and the amplitude of the fluctuation in-
creases monotonically as the delay increases. The small-
amplitude closed-loop fluctuations (~0.2% CO,) are
smaller than the chaotic ones without controller (~1.2%
CO,). The hot spot wobbles around the position shown in
Fig. 2 but does not take large excursions away from it as
in the uncontrolled case. There is some steady-state
offset as the temperature of the controlled hot spot is
lower than that in Fig. 2. This explains the lower mean
exit CO, concentration (~1.6%) with the controller on
relative to the 2.0% without control when the hot spot is
at the position in Fig. 2.

Many highly exothermic spatially distributed reactions,
like flame combustion, etc., exhibit ignition and extinc-
tion corresponding to two coexisting, locally stable fixed
points with finite domains of attraction. A sufficiently
large perturbation can then cause the system to shift from
one fixed point to another with typically undesirable prac-
tical consequences. Such extinction-ignition phenomena
are related to the hysteresis behavior if a system parame-
ter is varied as a bifurcation parameter. Instead of chaot-
ic spatiotemporal dynamics, our system also exhibits igni-
tion and extinction as a stationary hot spot will ignite or
extinguish in response to a large but transient disturbance
as shown in Fig. 4. We have also successfully used the
feedback law of (5) to suppress this behavior such that
the system returns to the original state (the ignited state
in Fig. 4) after some transient. In this case, the control
delay simply introduces an insignificant extension (~S5
sec) of the transient period without causing any fluctua-
tion. This is because, unlike chaos control of Fig. 3, the
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fixed point is stable for the uncontrolled system and the
controller simply enlarges its domain of attraction. The
other fixed point can sometimes be eliminated entirely by
feedback.

In conclusion, we are able to experimentally suppress
low-dimensional spatiotemporal dynamics of a distributed
thermal hot spot system by using modal feedback control.
This technique requires estimating the local dynamics
near a fixed point via a Karhunen-Loeve analysis of the
IR video images and by using the dynamics in a video
feedback control scheme. We are assisted by the fact
that the spatiotemporal chaos is related to a homoclinic
orbit which, in turn, is connected to a hyperbolic fixed
point with only one unstable eigenvalue. Suppressing the
chaotic behavior hence involves only stabilizing the fixed
point. The performance of our feedback control scheme
can be further improved if we can diminish delay in the
controller action. This can be achieved with a faster scan
converter in the video camera, or more likely, with a fas-
ter algorithm to carry out projection of the video images
onto the coordinates spanned by the empirical eigenfunc-
tions.
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FIG. 1. Projected dynamics from the video tape in the phase
space spanned by the first two Karhunen-Loeve modes. The
fixed point a* and its eigenvectors é; and é; are shown.



