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Stabilization of Chaos by Proportional Pulses in the System Variables
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We present a new method that allows one to stabilize chaotic systems by applying proportional
pulses to the system variables. The method does not require any previous knowledge of the system
dynamics. Acting on the system variables may be most useful for chemical and biological systems,
situations for which in some cases it may be difficult to find an accessible system parameter.

PACS numbers: 05.45.4+b

In recent years many low-dimensional nonlinear dy-
namical systems have been seen to show the kind of be-
havior known as deterministic chaos, being characterized
as chaotic systems by their strong sensitivity to small per-
turbations in their initial conditions. Instead, in many
practical situations one is interested in obtaining a more
regular behavior for the system, although the system
might need to be changed considerably. Yet, Ott, Gre-
bogi, and Yorke (OGY) have shown in a seminal con-
tribution [1] that it is possible to obtain a regular, or
periodic, behavior by making only small time-dependent
perturbations in some accessible system parameters. A
number of experimental studies have shown how to im-
plement these ideas in practice in different fields [2-6]
(see also [7] for a survey).

The OGY method [1] and its variants [8-10] work by
slightly perturbing a system parameter such that the sys-
tem remains attracted by the stable manifold of one of
the underlying unstable periodic orbits coexisting with
the strange attractor. In practice, one first tracks the
desired orbit and then applies the necessary changes in
the system parameter depending on the deviation of the
system from this orbit. There exist other (nonfeedback)
methods in which one does not perform changes in the
system according to its position in phase space, applying,
instead, weak periodic perturbations on some system pa-
rameters [11-14].

In this Letter we shall consider the possibility of sta-
bilizing chaotic systems by performing rather nonspecific
changes in the system variables, and not in system pa-
rameters. This possibility might be of application in
those situations where finding an accessible system pa-
rameter may be a difficult task, namely, the case of cer-
tain chemical, biological, or spatially nonhomogeneous
systems.

In the present method one performs changes in the sys-
tem variables in the form of instantaneous pulses spaced
in time, namely, every interval 7, in the form

Xi(t) = Xi())[1 + A, 1)

where X;(t) represents the ith variable of the system
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and A, which can be positive or negative, regulates the
strength of the pulse. One can think of a practical im-
plementation of this idea in the case of a batch chemical
reactor consisting of the injection of some amount of ei-
ther an inert compound or one of the i components.

As an application, we have stabilized a dynamical sys-
tem with three variables: the isothermal autocatalator
model of Peng, Scott, and Showalter [15], a model that,
in spite of its simplicity, is able to show a number of
features observed in the chemical experiments, including
deterministic chaos. All the numerical work has been
performed by employing a fourth-order Runge-Kutta al-
gorithm [16], where the step length has been carefully
chosen in order to avoid spurious behavior. From the
numerical work some features of the method have arisen.
First of all, there is a relationship between the two pa-
rameters of (1), the intensity of the pulses A and the
time elapsed between these pulses 7, such that these two
quantities are related in the form \/7 = const; this rela-
tionship is only approximate for high values of 7. This
property implies that once the behavior of the method is
known for a given value of 7 it is possible to extrapolate
to any other value.

On the other hand, the method shows the usual routes
to chaos as a function of A. In other words, by varying A
one can switch from a period-1 (limit cycle) behavior to a
chaotic behavior (in the limit of no perturbation, i.e., of
low values of ) following the usual subharmonic cascade,
and Feigenbaum’s constant § = 4.66 . . . is obtained in the
limit of period doubling bifurcations. This implies that
the present method works by creating a new dynamical
system that has A as a system parameter. In Figs. 1 and
2 we present some results for this model with A negative,
where different limit cycles have been stabilized, namely,
one- and two-cycles, although four- and eight-cycles can
also be found easily. A vertical dashed line splits the time
series in two parts: In the first one the system is driven
by the deterministic equations alone, while in the second
one the stabilization algorithm (1) is operating. The pa-
rameter values considered are close to the corresponding
bifurcation values, for in the sense that if a slightly lower
value of A were used, then one would obtain a cycle with
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FIG. 1. A stabilized period-1 orbit of the three-variable
autocatalator model [15]; the values for the parameters con-
sidered here are k = 10, § = 0.02, o = 0.005, and px = 0.154.
The stabilization acts after ¢ = 2. The integration step has
been taken as At = 0.00005 and the parameters for (1) are

A = —0.02 and 7 = 100At¢.

doubled periodicity.

It is possible to obtain a periodic behavior by using
both positive and negative values of A, although the re-
sulting limit cycles may be different. This happens, in
particular, for the results shown in Fig. 3. For high val-
ues of |A| the system is stabilized in the form of a fixed
point, although the behavior of the system is different for
the two cases of positive and negative values of A. For the
A > 0 case the stabilized fixed point is close, although not
equal, to an unstable fixed point of the original system
[17], and the corresponding one-cycle originates from the
latter through a Hopf-like bifurcation. Then, the limit
cycle shrinks in phase space as one goes to high values of
A. Instead, in the A < 0 case the system appears to per-
form a transition from the limit cycle to a newly formed
fixed point [18].
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FIG. 2. A stabilized period-2 orbit of the three-variable
autocatalator model. The parameters for (1) are A = —0.006
and 7 = 100A¢. For further details see Fig. 1.
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FIG. 3. A stabilized period-1 orbit of the three-variable
autocatalator model. The parameters for (1) are A = 0.006
and 7 = 100A¢. For further details see Fig. 1.

We have been able to stabilize a number of continuous
dynamical systems, like the Rossler and Lorenz models.
In this context it is interesting to deal with the Lorenz
model [19], because for A < 0 the present method sta-
bilizes in this case one of the two unstable fixed points
around which the system spirals in phase space [20]. Fig-
ure 4 shows a time series being stabilized by the system
in the fixed point with z and y negative. Depending on
the initial conditions it is possible to stabilize the other
fixed point with z and y both positive. In the case of
A > 0 the system is described by a limit cycle around the
third unstable fixed point (at the origin) of the original
system. For high enough values of A the system tends to
go to infinity. This unbound behavior for A > 0 has also
been found to occur for the Rossler model.

The phase space trajectory actually followed if a limit
cycle is stabilized consists of a series of continuous lines
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FIG. 4. A stabilized fixed point for the Lorenz model [19)].
The values for the parameters considered here are o = 10,
B = 8/3, and p = 28. The stabilization acts after ¢ = 50.
The integration step has been taken as At = 100At and the
parameters for (1) are A = —0.02 and T = 0.005.
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that present discontinuities at the points where the pulses
are acting. One can think of a smooth stable orbit that
in some sense shadows the stabilized trajectory. An im-
portant question is whether this shadow orbit, belonging
to the stabilized new dynamical system, corresponds to
some unstable periodic orbit of the original system. In
the already discussed situations where the system evo-
lution is described by a fixed point, it is found that for
some cases, i.e., Lorenz with A < 0 and autocatalator
with XA > 0, the stabilized fixed point appears to be close
to an unstable fixed point of the original system. Instead,
the Lorenz system with A > 0 has a tendency to go to
the fixed point at the origin, although the evolution is
unbound, while in the A < 0 case of the autocatalator
model the algorithm creates a new fixed point at the ori-
gin. In conclusion, the stabilization algorithm appears to
stabilize in some cases, although not in all of them, fixed
points close to those of the original system.

One can try to relate our results with those obtained
by some authors, observing that some particular numer-
ical methods, e.g., backward Euler, can suppress chaos
[21]. In fact, computers introduce through rounding er-
rors changes in the variables that are not constant, but
rather depend on the value of the variables. Perhaps in
this numerical context it might be possible to understand
the relationship between X and 7 if the error in each time
step is additive.

An important issue in a method that pretends to sta-
bilize chaotic systems is its robustness versus the appli-
cation of external noise. We shall consider first the ap-
plication of multiplicative white noise in the form

X£=Xi+0'[0,1]’yXi (2)

at every integration step At, where o[0, 1] is a stochastic
variable of zero mean and a Gaussian distribution with
width 1. The maximum allowable intensity of noise v is
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FIG. 5. The effect of multiplicative noise (2) is shown for
the three variable autocatalator model. The intensity of the
applied noise is v = 0.001, and the parameters of the stabi-
lization algorithm are A = —0.003 and 7 = 10A¢. For further
details see Fig. 1.

related to the intensity of the pulses A for 7 = At, that
establishes a well defined scale. In Fig. 5 we show an
example of the behavior of the system when this noise (2)
is applied. Things are not so clear when one has additive
noise (of the type X! = X; + 0[0,1]v). In this case the
effect of noise can be very important for those variables
that have a very low value in some cycles, and less can
be said in principle. In Fig. 6 we show an example of one
of these stochastic trajectories. It can be seen that tiny
perturbations when the value of the variable is low induce
sometimes transient behaviors in the following cycle.

In conclusion, in this Letter we have introduced a new
method that allows the stabilization of a chaotic system
by acting on the system variables, rather than in some
available parameter. The method is implemented by ap-
plying pulses that change proportionally the system vari-
ables. In a practical application, for instance in the case
of chemical or biological systems, this method could be
implemented by performing a dilution in the system, i.e.,
by making the concentration of the species diminish by
some amount.

Among the practical consequences of stabilizing
chaotic systems in this way one may mention the pos-
sibility of characterizing better chaotic states. It is often
argued that deterministic chaotic behavior in a time se-
ries cannot be easily distinguished from the presence of
purely stochastic behavior. The sensitivity of a system
supposed to be chaotic to this simple algorithm that per-
forms changes in the system variables could afford a way
of achieving this distinction.

Control and stabilization of chaotic systems allow one
to look at nonlinear systems with a different perspec-
tive, as the chaotic behavior can offer more opportuni-
ties for biological systems to react to a changing environ-
ment. The reason is that a chaotic system has a virtually
unlimited reservoir of periodic behavior. Living beings

30 — T T T
25 | 4
20 | ; 4
Z 15 ’l 1
10 i
| LA

: il

0 1 2 3 4 5 6

t
FIG. 6. The effect of additive noise is shown for the three
variable autocatalator model. The intensity of the applied
noise is v = 0.002, and the parameters of the stabilization
algorithm are A = —0.003 and 7 = 10A¢. For further details
see Fig. 1.
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are self-controlling biological systems, and pulses in the
neural system provoking pulses of some chemical control
substances may be an attractive mechanism for switch-
ing among different periodic states. Stabilized chaotic
systems could be at the edge between order and chaos,
something that some biologists claim to be necessary for
complexity to occur [22].
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FIG. 3. A stabilized period-1 orbit of the three-variable
autocatalator model. The parameters for (1) are A = 0.006
and T = 100At. For further details see Fig. 1.



0 20 40 60 80 100

FIG. 4. A stabilized fixed point for the Lorenz model [19].
The values for the parameters considered here are o = 10,
B = 8/3, and p = 28. The stabilization acts after ¢ = 50.
The integration step has been taken as At = 100At and the
parameters for (1) are A = —0.02 and 7 = 0.005.



