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Chaos, Noise, and Synchronization
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We show that a pair of chaotic systems subjected to the same noise may undergo a transition at large
enough noise amplitude and follow almost identical trajectories with complete insensitivity to initial con-
ditions. An analytic argument is presented to show that a pair of generic systems in the same potential
evolving to equilibrium through standard Langevin dynamics with the same noise collapse into the same

trajectory at long times.

PACS numbers: 05.45.+b

A generic feature of the chaotic state of nonlinear
dynamical problems is the extreme sensitivity to initial
conditions of the trajectory of a particle [1]. In this
Letter we show, in several different contexts, that two
chaotic systems linked with a common noise term, with
sufficient strength, have trajectories that coalesce and be-
come identical (albeit remaining noisy) at long times.
Since, in a chaotic state, deterministic systems exhibit an
apparent random behavior, one might have expected that
turning on actual randomness might lead to the system
becoming even more “random.” Our results are counter
to this intuitive expectation. This new phenomenon is
distinct from the synchronization in chaotic systems
wherein certain subsystems of nonlinear chaotic systems
whose Lyapunov exponents are negative will synchronize
when they are linked by common signals [2].

The phenomenon is best described in the context of a
one dimensional logistic map [1]. Specifically, we consid-
er the trajectories of a noisy logistic map where the posi-
tion at (discrete) time ¢+ 1,x’, depends on the position at
time ¢,x through the equation

x'=4x(1—x)+n, )

where 0 <x <1 and n is a random number chosen uni-
formly from the interval — W to + W with the constraint
that 0 < x' < 1. Thus if a chosen 1 violates the bounds
0 < x'< 1, it is discarded and a new n is chosen. We find
the remarkable result that for W > W, (we estimate
W.=1%) the trajectory for various initial conditions be-
comes point by point identical in time (up to the precision
of the computer) ultimately following a single random
trajectory, when an identical sequence of n’s is used in-
dependent of the initial condition. Figure 1 shows the
mean square distance between pairs of identically driven
(i.e., having the same noise) randomly chosen initial con-
ditions as a function of the number of iterations of the
logistic map. Three values of W were chosen: W =0 for
the first 108 iterations, W =0.3 for the next 10° and
W =0.6 for the final 108 iterations. The results vividly il-
lustrate that when W > W,, the trajectories of the parti-
cles become identical at long enough times; i.e., they are
synchronized.
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In order to characterize the transition occurring at W,
we have also studied the probability density distribution
P(d) at long times (5% 10° iterations with double pre-
cision) averaged over a hundred randomly chosen initial
pairs, where d =|x —y| and x and y are the pair of num-
bers being iterated. Specifically, we choose a pair of ran-
dom numbers, each of which is iterated 5 X 103 times with
the same noise. The values of d are determined at this
time. The calculation is then repeated 100 times to get a
probability distribution for d.

Our results indicate that, for a finite precision & (when
d becomes smaller than g, it is set to zero and remains
zero thereafter),

Pd)=0—=-2)P(d)+16(d), )

where & is the Dirac delta function, the normalized P(d)
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FIG. 1. Plot of mean square distance versus number of itera-

tions (each unit represents 50000 iterations) for the logistic
map. W =0 for the first 10% iterations; W =0.3 for the next
5x10° iterations; and W =0.6 for the last 5x10° iterations.
The calculations were carried out in double precision. The re-
sults were averaged over 100 realizations. In single precision,
the mean square distance goes to zero more rapidly.
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is a smooth function of W, and A(W) is shown in Fig. 2.
In the limit of infinite time and finite precision, A would
be equal to 1 for W> W,. (More precisely, one may
work with perfect precision and consider the fraction of
systems with d < ¢ at time ¢. A is then the limiting value
of this fraction on first letting t— oo and then letting
e—0.)

Thus, in terms of A we have a transition at W=W.,.
A(W) is identically zero for W < W, and it is different
from zero for W > W,.. Note that for finite time and
finite precision A does not increase monotonically with
W—it has a maximum value around W =0.55. Our re-
sults for the logistic map may be understood qualitatively
as arising from the extreme deamplification of the dis-
tance between neighboring points when the sum of the
pair of numbers is 1 since the distance evolves according
to

d'=4d{l —(x+yp)}. 3)

Notice that stochasticity due to the noise enters Eq. (3)
through x+y whose evolution does depend on 7. Since
the density of successive iterates of the logistic map is
high close to 0 and 1, a W greater than or equal to + al-
lows both the numbers to be shifted in such a way that
they are both close to 5 and their sum becomes close to
1.

We have verified that this phenomenon is robust to
changes in the coefficient 4 in the logistic map [Eq. (1)].
Note also that because the logistic map exhibits a high
density of states near 0 or 1, the added noise (with the
constraint that the pair of numbers stay within the basin
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FIG. 2. Plot of A, defined in Eq. (2), versus W. The resuits
were obtained after 500000 iterations in double precision and
used 100 independent runs. The solid line consists of straight
line segments through points obtained using the criterion that
(x —y)? is equal to zero in double precision. The crosses denote
a criterion of [x —y| <1072,
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of attraction) is asymmetric.
In order to underscore the generality of the phe-
nomenon, we now turn to the Lorenz equations [1]

dx dy
X —py—p = -
y x’ dt

dt

g—z-=xy-—bz,

dt

xz+rx—y,

4)

with P=10, b= %, and r =28, which we integrate with a
time step of 0.001 unit. Unlike the logistic map, the
Lorenz equations have an unbounded basin of attraction
for the strange attractor. We now generalize the y equa-
tion [3] (in difference form) to

ya+a)=y(@)+[—x@)z()+rx) —y)]ar
+ (random) W, VAt , (5)

where (random) denotes a random number generated
from a uniform distribution between 0 and 1 and the am-
plitude W, plays the role of W in the logistic map. Un-
like in the logistic map, which has a finite basin of attrac-
tion, the noise term is not peculiar here. (In the logistic
map, the noise had to be chosen specially in order to en-
sure that the iterate stayed within the basin of attraction.
Thus the noise term depended on the state of the system.)
The VAr in (5) has been introduced in order that the
threshold scales independently of Af in the Az — 0 limit.
A threshold value of the amplitude (~%) is found
beyond which one observes the synchronization effect as
in the logistic map (Fig. 3). This quenching does not
take place (for W, =1 within 10° time steps) when the
noise term with the same amplitude is made symmetric
[i.e., random is replaced by (random —0.5)].
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FIG. 3. Plot of mean square distance versus number of itera-
tions (each unit represents 1000 iterations) for the Lorenz
equations. The noise amplitude W;=0.7. The calculations
were carried out in single precision and the results averaged
over 100 realizations.
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Several authors have considered the role played by
noise in bringing about a transition from chaotic behavior
to “ordered” behavior. Matsumoto and Tsuda [4] report
studies of “‘noise induced order” caused by smearing and
shifts of the peaks in the invariant density—a peak near
the fixed point in the absence of noise moves to a region
close to the critical point due to the noise. Such a transi-
tion was observed in a model of the Belousov-Zha-
botinsky reaction but not in the logistic map [4]. Recent-
ly, a great deal of progress has been achieved in the “con-
trol” of chaos [5,6]. The key idea is that the chaotic
motion of a dynamical system can be converted into a
periodic motion by imposing tiny carefully chosen time
dependent perturbations of a system parameter to enforce
one of the unstable orbits embedded within the strange
attractor. An alternative method of Hubler and co-
workers [7,8] does not use a feedback mechanism but re-
lies on the construction of model equations for the dy-
namics and modifies the driving force to ensure that the
desired dynamics is the stable solution. A possible con-
nection between the phenomena discussed here and the
results of Refs. [4,7,8] is the presence of large regions
with small local Lyapunov exponents that cause syn-
chronization to goal orbits in convergent areas. A simple
way of viewing our results is to visualize the noisy chaotic
equations as arising from the coupling of the chaotic sys-
tem (with a positive Lyapunov exponent) with other vari-
ables (constituting the noise) so that the supersystem has
a negative Lyapunov exponent [9]. However, the strange
attractor is not replaced by anything simple such as a
fixed point or limit cycle.

Fahy and Hamann (FH) [10,11] demonstrated, based
on numerical studies, that when particles with different
initial conditions were driven by an identical sequence of
random forces, their trajectories may become identical at
long times if the time interval between successive random
forces becomes smaller than a given threshold. This re-
sult has important consequences in Monte Carlo applica-
tions [10]. We now turn to a simple analytic argument
for the FH result. We will see that this phenomenon is of
the same type exemplified in the two systems described
above.

In the limit in which the time separation between suc-
cessive forces becomes small compared to any charac-
teristic macroscopic time scale of the problem the FH
effect can be understood in terms of Langevin dynamics
[12). Indeed let us consider a pair of particles with
different initial locations moving in the same d-dimen-
sional potential subject to the same noise governed by
Langevin equations of the form

x=F(x)+n@) )
and

y=F(y)+n0), (7)
with (n()ng(t')) =2kpT8e6(t —1'), a=1,2,...,d. If

F(x) = —V,V(x), the probability distributions of the po-
sitions of the particles at infinite time will be Peq(x)
xe AV provided the system is ergodic. We now turn
to the Fokker-Plack (FP) [12] equation satisfied by the
joint probability distribution P(x,y,?),

b _ ) 9
P ; 9x, aya

+kpT(VI+V242V,-V,)P,

where V, =[8/0x,,8/0x3, . . .,8/0x4] and the initial con-
dition is P(x,y,t =0) =8(x —x9)6(y —yo). The above
equation can be conveniently recast in the form P(r,7)
=—32,0:J;, with J;=f;P—kgTX 4 \T;;8,P, where f,
r, and @ are 2D component vectors,

f=(F(x),Fy(x), ... Fa(x),Fi(y),Fa(y), ... Faly)),

[F.(x)P1+ —I[F,(y)P]

r=(xl,x2""’xd,yl’yz,""yd)9

and

a=|9 8 . 8 98 8 98 |
dx,’ 9x, 6xd’ay|,a}’2 dyq ’

I;j=1 when i=j or |i—j| =d and zero otherwise. The
stationary solution of the FP equation [the t — o limit of

P(x,y,2)] will be such that J;=0 for i=1,...,2d, im-
plying that

F(x)P;(x,y) —kgT(V,+V,)P;(x,y) =0 (®)
and

F(y)P,(x,y) —ksgT(V,+V,)P;(x,y) =0. )

The unique solution of (1) and (2) which is normalizable
is Ps(x,y) a §(x —y)expl — BV (x)], which corresponds to
the two particles sitting on top of each other. In this
case, P(d) =6(d), i.e., =1 [see Eq. (2)].

In conclusion, we have shown quite generally that non-
linear systems coupled through identical strong noises
may have the same trajectory in the long time limit. In
this context we were able to explain recent findings by
Fahy and Hamann [10] on molecular dynamics studies of
pairs of particles subjected to the same random forces,
using Langevin dynamics. It is interesting to compare
this new effect with the well known Casimir effect [13].
The latter case corresponds to the interaction between
two parallel plates in vacuum due to quantum fluctua-
tions of the electromagnetic field. It also manifests itself
classically in the form of a long range interaction between
two plates immersed in a system having critical fluctua-
tions such as a binary fluid at its consolute point [14].
The effective attraction between trajectories mediated by
the presence of the identical noise may be thought of as a
generalized (dynamical) Casimir effect.
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