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Ferromagnetic Spin-Wave Theory in the Multiband Hubbard Model Having a Flat Band
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The peculiar effect of electron correlation in multiband systems is illustrated for the recently proposed
ferromagnetism in a Hubbard model having flat bands. Despite the flatness of the band, an acoustic
spin-wave mode with a finite stiffness exists along with optical modes below a Stoner gap. The relevant
energy (gap and stiffness) transmutes from the Hubbard U in the weak-coupling limit to ¢ (transfer in-
tegral) in the strong-coupling limit. This implies a stable itinerant ferromagnetism with finite band

widths.

PACS numbers: 75.10.Lp, 75.30.Ds

The correlated electron system in multiband systems
having more than one atom per unit cell is interesting, be-
cause we expect that the electron repulsion, even when
short-ranged (on-site Hubbard U), will exert unusual
effects. The correlation effect is in general highlighted by
the spin state of the system, which is dominated by the
competition between kinetic and interaction energies.
Aligned spins have lower interaction energies due to
Pauli’s principle at the cost of the kinetic energy. In the
single-band Hubbard model, however, we can only expect
ferromagnetism for U =oo as in Nagaoka’s case of a sin-
gle hole [1,2].

A drastic effect of the multiband appears in a recent
finding of the ferromagnetic ground state in a class of
Hubbard systems on decorated lattices that contain flat
(dispersionless) bands [3-7]). The appearance of the flat
bands is a result of interference of wave functions when
we have a certain class of bipartite lattices (Lieb’s model)
or specially tuned transfer integrals (Mielke or Tasaki’s
model). In other words, in the flat-band situation, each
“Wannier wave function” localized around each unit cell
becomes an eigenstate of the tight-binding Hamiltonian.
The ground state in each model has been shown to be fer-
romagnetic with the fully spin-polarized flat band for ar-
bitrary magnitude of U > 0. Although these models may
at first sight seem singular, we can evoke the relevance to
real materials. Recently this is done systematically for
2D superstructures conceived for organic materials (7-
conjugated electron systems) by Shima and one of the
present authors [8].

Now, we think that the discussion of the ground state
alone is by far insufficient, and the truly intriguing effect
of multibands in such systems should appear in the low-

one regarded the flat band as a heavy-mass limit of an
isolated band, one might expect that the dynamics of the
spin wave would be singular as well, since the spin
stiffness is inversely proportional to the density of state in
the single-band model. We shall in fact show here that
the multiband correlation effect resumes finite spin
stiffness and finite charge gap: In the weak-correlation
limit (U— 0), the k-dependent interaction determines
the spectrum, while in the strong-correlation limit (U
— o0), the exclusion of doubly occupied sites exerts a
multiband effect via k-dependent interaction kernels.

The excitation spectrum turns out to comprise an
acoustic magnon mode with a finite stiffness along with
optical magnon modes below a Stoner (individual
charge-excitation) gap that is almost k independent. This
holds, surprisingly, for both the weak-correlation and
strong-correlation regimes, wherein the energy scale (the
gap and the stiffness) transmutes from U to t. The finite
stiffness and the gap imply that the ferromagnetism is
indeed stable against finite perturbations such as a finite
dispersion in the flat band.

We start with the weak-coupling regime. In this limit,
there exists the “generalized Hund’s coupling™ [9] in the
Hubbard system, which manifests itself in ferromagne-
tism in the flat band via the effective exchange interaction
[5,9]. To investigate low-lying excitations along this line,
we can concentrate on the variation in the spin config-
uration on the flat band and neglect the interband
scattering, which is a higher-order process. This is
justified at least when there is a gap between the flat band
and other ones as is the case with Tasaki’s model [10].
The energy of excited states can then be obtained within
the band. The Hamiltonian projected on the flat band

lying excitations (spin waves for a magnetic system): If | (labeled with /) reads in k space
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where C;L, creates an electron on the flat band with a wave vector k and a spin o.
Since &(k)=0, all the characteristics of the model are incorporated in the k dependence of the projected coupling

constant,
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where the sum is taken for n atoms within a unit cell and
#im (k) is the solution of the tight-binding Hamiltonian in
the Fourier representation,

3t o (KD @1 (k) =7 (k) 91 (k).

This Hamiltonian should generally describe the systems
with ferromagnetic ground states as long as the irreduci-
bility of a density matrix on the flat band is fulfilled,
which Mielke has shown is a sufficient condition for fer-
romagnetism [5], and we can show that the condition in
turn implies a k-dependent interaction on the flat band.
An excited state with wave vector q can be obtained as

lx(q) =}k: fk)S ~(k,q)| P,

where S ~(k,q) =Cik+q;Cixt flips a spin in the fully po-
larized flat band, |F). The amplitude f(k) is determined
by the usual equation-of-motion method [11] which yields

[hwq—&(k+q)+&(k) —Acdf(k)
=-YV(k+qpkp+q)f(p), )
P

where Ak=Zp V(p,k,k,p) is the Stoner excitation gap
and g(k)=0. We have numerically solved this transcen-
dental equation for typical flat-band models, where a
half-filled flat band is fully polarized. The result for
Mielke’s model [Fig. 1(a)] and for Tasaki’s model [Fig.
1(b)] [12] in 2D shows that the low-lying excitations con-
sist of collective modes below a continuum.

In the usual itinerant ferromagnetism with k-inde-
pendent V, it is the band disperison, £(k), that determines
the g-dependent magnon dispersion and makes the lower
and upper boundaries of the Stoner continuum dispersive.
By contrast, since g(k)=0 here, the Stoner continuum
becomes a rectangular band (with flat top and bottom)
whose width equals that of Ag [which coalesces into a line
in Mielke’s model, Fig. 1(a)l. The spin wave, on the oth-
er hand, does have a dispersion with a finite stiffness of
order U, which comes from the k& dependence of the cou-
pling constant in Eq. (3) [13]. The collective modes
comprise a gapless spin wave (acoustic magnon) along
with optical one(s) which involve spatial spin oscillations
within a unit cell. The number of magnon branches
equals the number of ¢, (k) that is not identically zero.

Mielke and Tasaki have discussed the upper bound for
the magnon dispersion by reducing the Coulomb interac-
tion to a spin Hamiltonian on the flat band [7]. They
have shown that the spin Hamiltonian in the condition of
the local connectivity simplifies into the Heisenberg mod-
el for a certain choice of the (nonorthogonal) basis. In
the present Hamiltonian, which includes charge excita-
tions as well, the condition manifests itself as the k
dependence in the coupling constant.

Now the opposite limit of strong correlation is more in-
teresting, since the weak-correlation picture should be
drastically altered there. The most crucial question is
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FIG. 1. Spin-wave modes (solid curves) and Stoner excita-
tions in the weak-coupling regime in the 2D Mielke model with
y=0 (a) and Tasaki’s model (b) depicted in the insets. For the
inset in (a) the flat band at the bottom of the single-electron
dispersion for y =0 becomes dispersive for y=0.

whether the mass for the spin wave remains finite. Here
we have to employ a completely different method, and we
take a Roth type trial wave function [14,15] to represent
the one-magnon state in the limit U =oco. For multiband
systems, we can write this function as

lx(q)) e kZ e CF Dy, (k) Clin, 1 (1 = Retu, ) Ca| F),
rLm

@
where y,, (k) is an amplitude which should be determined
by solving a scattering problem, and the flat band is as-
sumed to be the lowest branch in the single-electron
dispersion as is the case with Mielke’s and Tasaki’s mod-
els. The summand represents that the annihilation of 1
spin from the flat band is followed by a creation of | spin

at each site with the Gutzwiller projection, and this in-
corporates both the correlation effect and the interband
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effect, since the exclusion of doubly occupied sites in-
volves multiband processes. |y(q)) includes both spin
wave and Stoner (charge) excitations as does the weak-
coupling expression. In the above trial function the
Gutzwiller projection operates on the ferromagnetic Fer-
mi sea, so that we implicitly assume that the contribution

of the components in which the Fermi sea interior is dis-
turbed is not appreciable for low-lying excitations.

We can now minimize the excitation energy, £(q)
=(x(q)|H —Eo|x(q)), for each value of q, where E is
the energy of the ferromagnetic ground state. By varying

| wm, we obtain a set of eigenvalue equations,

. 1
Z”:K,,,,,(k,q)w,,(k)+ N

a p#k,n

Here the kernels, K,,, and L,,,, are given in terms of a
Fourier transform of ¢, (k)¢..(k), where the band index
v runs over / (flat band) and dispersive ones.

The eigenvalue equation above is applicable to any
multiband model in which the bottom band (flat or
dispersive) is filled by 1 electrons. We have solved the
equation numerically for finite systems with periodic
boundaries, in which sample-size dependence turned out
to be small.

Figure 2 shows the dispersion relation extrapolated to
the infinite system by assuming that the size dependence
disappears as O(1/N,). We immediately recognize the
similarity with the weak-coupling result: the gapless
Goldstone mode (acoustic magnon) along with the optical
magnon modes (with a spatially oscillating spin-spin
correlation) below the nearly flat charge (Stoner) gap.
The essential difference is that both the spin-wave stiff-
ness and Stoner gap are now of the order ¢ rather than
something like 12/U =infinitesimal as one might naively
expect. [Numerically, the charge gap is Eg=2.88¢
(5.13¢) for Mielke’s (Tasaki’s) model, while the stiffness
D in the spin-wave spectrum Esw(q) =Dg? for small g is
D =0.19¢ (D=0.37t) for Mielke’s (Tasaki’s) model.]

The finite spin stiffness and a charge gap contrast with
those in the more subtle Nagaoka ferromagnetism in the
single-band Hubbard model. We can identify the
difference by evoking the discussion of the latter by Shas-
try, Krishnamurthy, and Anderson [15]. The energy re-
quired to flip a spin, £(q), is a sum of an energy to take
out a | electron, an energy to add a | electron in the
down spin band, and a positive scattering energy of the 1
Fermi sea. The sum scales like the hole concentration
from the half filling, § =1—(n). This reflects the reduced
effective bandwidth of the down spin, which can only hop
to vacant sites due to the strong correlation. For Na-
gaoka’s case doped with a single hole (with §=1/N
=infinitesimal), the mass of the spin-wave mode below
the Stoner gap (£ « §) becomes infinitely heavy (e 1/8).
In the flat-band ferromagnetism, by contrast, the single-
particle mass is infinitely heavy, but the electron correla-
tion renders the spin-wave mass ~¢ even for U =oo. This
is because, although the flat band is half filled, higher
bands are empty, leaving the occupation number per site
less than unity. Further, the energy of the correlated
down-spin electron is always elevated from the lowest
single-particle state which is just the flat band itself. This
means that the above sum is positive finite in the flat-
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band system, and we end up with a finite £(q) with a
singular dependence on & absent.

The above results enable us to expect that ferromagne-
tism should survive when the flat band is made dispersive
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FIG. 2. (a) Spin-wave excitations (solid lines) and a scatter-
ing continuum (hatched regions) for Mielke’s model with y=0
(upper panel) and for y=0.9 (lower panel) in the strong-
coupling limit (U =c0). (b) Spin-wave excitations (solid lines)
and a charge excitation continuum (hatched region) for
Tasaki’s model
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up to a finite extent. When we introduce a parameter y
in Mielke’s model [Fig. 1(a)]l to make the flat band
dispersive, ferromagnetism should disappear at least in
the small U limit. In the large U limit, however, a finite
gap in the charge excitation implies that a finite y should
be required to destroy ferromagnetism. For y=1, the
half-filled flat band in Mielke’s model becomes the
quarter-filled, single-band square lattice, which is beyond
the critical hole concentration, 6. =0.49, for the vanish-
ing charge and spin-wave excitation energies at the Bril-
louin zone corner in the square lattice found by Shastry,
Krishnamurthy, and Anderson [15]. Our calculation of
the change in the energy spectrum against y [Fig. 2(a)]
using the function, Eq. (4), in the strong-coupling limit
indeed shows that a dip in the charge gap and spin-wave
dispersion appear at the M point (while the optical mag-
non mode is eventually absorbed in the Stoner continu-
um).

The acoustic spin wave softens at y.=0.915, but there
is an indication that the actual breakdown of ferromagne-
tism occurs prior to this, accompanied by a discontinuous
change in the total spin. A phase diagram on the (y,U)
plane obtained from a numerical diagonalization of finite
systems [16] shows that the ferromagnetic phase exists
for U= U.(y), which diverges at 0.4 < y. <0.5. At the
boundary a level crossing occurs between the fully spin-
polarized state and a paramagnetic one (with S=0).
The level crossing is also expected from the result of Pu-
tikka, Luchini, and Ogata [17] that the singlet ground
state is lower in energy than the ferromagnetic state by a
significant amount at y=1. At any rate, the finite 7.
confirmed here again implies an itinerant ferromagnetism
for finite bandwidths.
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