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Lattice Calculation of the Penguin Diagram Decay H .-K'p
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We calculate the leading-order matrix element for the decay B —+ K'p in the quenched approx-
imation of lattice /CD on a 24 x 48 lattice at P = 6.2, using an O(a)-improved fermion action.
Extrapolating to physical quark masses gives an on-shell form factor of T& (q =0) = 0.15+',4 (stat).
We find Tq is approximately independent of the spectator quark mass and extract Tz (q =0) = 0.15+4
if this independence is assumed. We find the results to be consistent (in the standard model) with
the CLED experimental branching ratio of B(B~ K'p) = (4.5 6 1.5 6 0.9) x 10

PACS numbers: 12.38.Gc, 13.40.Hq, 14.40.Nd

Theoretical interest in the rare decay 8 ~ K'p as a
test of the standard model has recently been renewed by
the experimental results of the CLEO collaboration [1].
For the first time, this mode has been positively identified
and a preliminary determination of its branching ratio
given.

The significance of 8 -+ K'p arises from the under-

lying flavor-changing quark-level process b -+ sp, which
first occurs through penguin-type diagrams at one-loop
level in the standard model. The process is also sensitive
to new physics appearing as virtual particles in the in-

ternal loops. Existing bounds on the b -+ sp branching
ratio have been used to place constraints on supersym-
metry [2—4] and other extensions of the standard model

[5 6]
In order to compare the experimental branching ra-

tio with a theoretical prediction it is necessary to know

the relevant hadronic matrix elements. These have been
estimated using a wide range of methods, including rela-
tivistic and nonrelativistic quark models [7—9], two-point
and three-point @CD sum rules [10—13], and heavy quark
symmetry [14], but there remains some disagreement be-
tween the difFerent results. It is therefore of interest to
perform a direct calculation of the matrix elements using
lattice @CD. The viability of the lattice approach was
first demonstrated by the work of Bernard, Hsieh, and
Soni [15] in 1991.

In the leading-log approximation the B ~ K*p transi-
tion is caused by a single chiral magnetic moment opera-
tor from the effective weak Hamiltonian. In the notation
of Grinstein, Springer, and Wise [16] this is

07 = rnb so„(1+ps)b F"",—
167t~ " 2
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The on-shell (q = 0) matrix element depends on Tt only,
»n«T2(q'=0) = —iTt (q =0) and the coefficient of Ts is

zero. Performing the necessary phase space integral and
sums over polarization vectors gives the decay width for
8 ~K'p,

with an on-shell matrix element given by

O7(rrtb)I tb1t*,rl"'(K" Isrr„q"bRI8), (2)
2 27r2

where q and t7 are the momentum and polarization of the

emitted photon. The coefficient Cq(mb) arises from the

mixing of Oq with other effective operators in running the
scale down from Mtv to rnb. The anomalous dimension

matrix of all the efFective operators at the one-loop level

has been calculated by several groups and is now well

understood [17].
Following Bernard et al. the general matrix element

can be parametrized in terms of the momentum, Ir, and

polarization, t, of the K*, and the momentum, p, of the
8 meson, using three form factors, Tt, Tz, and Ts, where

Tt is chosen to be real, so that Tz and Ta are purely

imaginary,
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As the mass of the b quark is almost twice the inverse
lattice spacing, direct computation of a b-quark propa-
gator is not feasible. We therefore compute heavy-quark
propagators with masses in the region of the charm-quark
mass, and extrapolate.

Our statistical errors are calculated according to the
bootstrap procedure described in Ref. [18], using 250
bootstrap samples.

To obtain the matrix element (V(k)lso„„blP(p)), we
calculate a ratio of three-point and two-point correlators,

By computing the matrix elements on the lattice for var-
ious q2, the on-shell value of the form factor Ti(0) can
be obtained by interpolation.

We work in the quenched approximation on a 243 x 48
lattice at P = 6.2, which corresponds to an inverse lattice
spacing a = 2.73(5) GeV, evaluated by measuring the
string tension [18]. Our calculation is performed on sixty
SU(3) gauge field configurations (for details see Refs. [18]
and [19]). The quark propagators are calculated us-

ing an O(a)-improved Wilson fermion action [20]. We
use gauge-invariant smeared sources for the heavy quark
propagators with an rms smearing radius of 5.2 [21]. Lo-
cal sources are used for the li ht uark ro a ators.

,'&'„(t, tf, p, q)

x,y

) e @ ~'~ 'le 'sp(P(p)tbo„„stV(k, s)),

g q p p g
where

C „"„(t,ty, p, q) = ) e'P'"e ' '"(Jp(ty, x)T„„(t,y) J&z(0))

and

Cir"'(t, k) = —
s ) e'"'"(Jvi (t, x)Jf (0))
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t and C~„, approaches a plateau. The factors Zp, Zi and
the energies of the pseudoscalar and vector particles are
obtained from fits to two-point Euclidean correlators.

The form factor Ti can be conveniently extracted from
the matrix elements by considering difFerent components
of the relation

4(k ps -p k~)Ti(q2)

with Jp and Jii interpolating fields for the pseudoscalar
and vector mesons, respectively. T&„ is the O(a)-improv-
ed version of the operator bo„„s [22]. The full ma
trix elements can then be derived by using the rela-
tion o„„ps ———se~g~cr"I'. We employ time reversal
symmetry to obtain the correctly ordered matrix ele-
ment, (V(k) tso„„btP(p)). To evaluate these correlators,
we use the standard source method [23]. We choose
tf = 24 and symmetrize the correlators about that
point using Euclidean time reversal [24]. We evaluate

C~„„ for three values of the light quark mass (z~
0.14144, 0.14226, 0.14262), two values of the strange
quark mass (z, = 0.14144, 0.14226) which straddle the
physical value (given by zi'h"' = 0.1419(1) [19]), and
two values of the heavy quark mass (zI, = 0.121,0.129).
We employ two values of the B meson momentum
[(12a/n)p = (0, 0, 0), (1,0, 0)), and seventeen values of
the momentum, q, injected at the operator, with mag-
nitudes between 0 and 2ir/12a. To improve statistics we
average over all equivalent momenta, and utilize the dis-
crete symmetries C and P, where possible.

Provided the three points in the correlators of Eq. (9)
are sufficiently separated in time, the ground state con-
tribution to the ratio dominates:

Z Z ).~.(V(»~)Iso~-blP(p))+".
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FIG. 1. Ti vs time slice, t. (For computational reasons,
only time slices 7—16 were stored. )

= s ~~") ep(V(k, e) lao„„btP(p))q". (13)

We see a plateau in Ti about t = 12, and fit Ti(t; p, q)
to a constant for t = 11,12, 13, where correlations are
maintained between all of the time slices. The use of
smeared operators for the heavy quarks provides a very
clean signal, with stable plateaus forming before time
slice 11. Data with initial or final momenta greater than
(z /12a) +2 are excluded, because they have larger statis-
tical and systematic uncertainties.
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The data for the heaviest of our light quarks, r.t = K, =
0.14144, with the smallest statistical errors, are shown in
Fig. 1.

We fit Ti(q ) to a linear model in order to obtain the
on-shell form factor Ti(q =0),

Ti(q ) = a+bq, (14)
allowing for correlations between the energies of the vec-
tor and pseudoscalar particles and Ti at each q . For our
range of masses and momenta the differences between
linear and pole model fits are small. The data and fit for
zt = K, = 0.14144 are shown in Fig. 2.

The light quark mass is set to zero by a correlated
chiral extrapolation to ri = K„;t [= 0.14315(2)]. We
assume that the on-shell Ti varies with the light kappa
values, zi, according to a linear model,

1

+crit )
(15)

The strange quark mass is set to its physical value by
interpolation [r, = @&""'= 0.1419(l)].

The momentum carried by the vector particle is of the
order of the mass of the pseudoscalar and therefore heavy
quark efFective theory does not provide a scaling relation-
ship [25]. As the form factor has only been evaluated at
two different pseudoscalar masses, an investigation of the
behavior of Ti(q =0) as a function of mp cannot be car-
ried out. In this analysis, we therefore perform a naive
extrapolation from the two pseudoscalar masses up to
rn~ by using the form

Ti(q =0;mi) = A+
mp

(16)

After performing this extrapolation, we obtain
Ti(q =0;mz) = 0.15+i4, where the quoted error is
purely statistical, and does not include systematic errors.

The finite renormalization needed for the lattice-
continuum matching of the u„operator has been cal-
culated [26] but has a negligible effect here ( 2') and
is not included.

%e note that the slopes of the form factor T~ with
respect to ~t in the chiral extrapolations are consistent
with zero (Fig. 3), which indicates that Ti(it„eb, rq) is
almost independent of ~t. However, this behavior oc-
curs only for the spectator quark, and is not seen to the
same extent for the interacting strange quark. We ex-
plore this by fitting Ti to a constant for the three val-
ues of ri We. find that the y2 per degree of freedom is
comparable to the original linear model, indicating that
the model is statistically valid. Using this approach,
the final statistical error is significantly reduced, and
we obtain Ti(q =0; mg) = 0.15+4. Given the unknown
systematic errors in the calculation, and in particular
those resulting from extrapolating Ti(q =0;m„- mii)
to Ti(q =0;rnB), this value should only be taken as a
guide at the present stage. The results for Ti, using both
analysis procedures, are shown in Fig. 4.

In this Letter we have reported on an ab initio compu-
tation of the form factor for the decay B ~ K'p. The
large number of gauge configurations used in this calcula-
tion enables an extrapolation to the appropriate masses
to be made and gives a statistically meaningful result. To
compare this result with experiment we convert the pre-
liminary branching ratio from CLED, B(B —+ K'p) =
(4.5+1.5+0.9) x 10 based on 13 events, into its corre-
sponding Ti form factor, assuming the standard model.
We work at the scale p, = mb = 4.39 GeV and use values
from the Particle Data Group [27], combined with Eq.
(8). Setting the mass of the top quark to be mt ——100,
150, and 200 GeV we find Ti "~ to be 0.23(6), 0.21(5), and
0.19(5), respectively. The two lattice results are consis-
tent with these experimental numbers within statistical
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FIG. 2. Ti(q ), with a linear fit. The dotted lines represent
the 68'Fp confidence levels of the Gt at q = 0.

Q 0 I I t I I 1 I I I I I I 1 I I l I I I I l I I~
0.00 0.01 0.02 0.03 0.04 0.05

q light

FIG. 3. Chiral extrapolation of Ti(q =0). The dotted lines
indicate the 68'Fo confidence levels of the fit. m~ ~;~ht is the
lattice pole mass.
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FIG. 4. Extrapolation of Tz(q =0) to mz. LCE, using lin-
ear chiral extrapolation; CCE, using constant chiral extrapo-
lation for the spectator quark. (N.B. for clarity, the LCE and
CCE points have been displaced horizontally by 0.02 to the
left and right, respectively. )
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