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We bosonize the low energy excitations of Fermi liquids in any number of dimensions in the
limit of long wavelengths. The bosons are a coherent superposition of electron-hole pairs and are
related with the displacements of the Fermi surface in some arbitrary direction. A coherent-state
path integral for the bosonized theory is derived and it is shown to represent histories of the shape
of the Fermi surface. The Landau theory of Fermi liquids can be obtained from the formalism in
the absence of nesting of the Fermi surface and singular interactions. We show that the Landau
equation for sound waves is exact in the semiclassical approximation for the bosons.
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Attempts to describe fermionic systems by bosons
date to the early days of second quantization. In the
early 1950s Tomonaga (1], generalizing earlier work by
Bloch [2] on sound waves in dense Fermi systems, gave
an explicit construction of the Bloch waves for systems
in one dimension. His work was subsequently generalized
by many authors [3] who derived an explicit Fermi-Bose
transmutation in one-dimensional systems. These works
uncovered deep connections in relativistic field theories
(both fermionic and bosonic) and with condensed matter
systems.

The success of the bosonization approach in one dimen-
sion is related to phase space considerations. Even for
noninteracting fermions, two excitations with arbitrarily
low energies moving in the same direction move at the
same speed (the Fermi velocity) and, hence, are almost
a bound state. Consequently, even the weakest interac-
tions can induce dramatic changes in the nature of the
low-lying states. These effects are detected even in per-
turbation theory and result in the presence of marginal
operators. In dimensions higher than one, phase space
considerations change the physics of the low-lying states
and there are no relevant or marginally relevant opera-
tors left. This observation is at the root of the stabil-
ity of the Landau theory of the Fermi liquid [4]. It is,
thus, hardly surprising that very few attempts have been
made to generalize the bosonization approach to dimen-
sions higher than one [5]. The earliest serious attempt
at bosonization in higher dimensions was carried out by
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Luther [6]. Luther constructed a generalized bosoniza-
tion formula in terms of the fluctuations of the Fermi
sea along radial directions in momentum space for the
noninteracting problem. Interest in the construction of
bosonized versions of Fermi liquids has been revived re-
cently in the context of strongly correlated systems (7).
That particle-hole excitations have bosonic character is
well known since the early days of the Landau theory,
e.g., the sound waves (zero sound collective modes) of the
Fermi surface of neutral liquids or plasmons in charged
Fermi liquids [8]. Haldane [9] has recently derived an al-
gebra for density fluctuations of a Fermi liquid in the form
of a generalized Kac-Moody algebra (see also Ref. [10]).

The main point of this Letter is to derive a descrip-
tion of the Fermi liquids as the physics of the dynamics
of the Fermi surface. The main reason to believe that
the Fermi surface is a real dynamical entity is based on
the following observation: The total energy of an inter-
acting electronic system can be written as an integral in
momentum space of the form [11] E = ), Ex. For the
case of Fermi liquids, Ey has a discontinuity at the Fermi
surface (exactly as for the case of the occupation num-
ber [12]). We can think of this discontinuity as due to
the difference of energy density across the Fermi surface
[13]. Hence, we can define an energy per unit area of the
Fermi surface, i.e., a surface tension. It readily follows
that this surface tension is proportional to the quasiparti-
cle residue and therefore it vanishes for non-Fermi-liquid
behavior. From this point of view we see the Fermi sur-
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face as a drumhead where the elementary excitations are
the sound waves (and in particular the zero sound) which
propagate on it. In this paper we will derive an effective
bosonized theory for the dynamics of these excitations.

Our starting point to approach this problem resembles
the microscopic approaches for the foundations of Fermi
liquid theory [14]. However, instead of working with
the dynamics of the response functions, we will work di-
rectly with the dynamics of operators as in the standard
procedures of bosonization in one dimension. Our main
result is the derivation of a bosonized theory of the fluc-
tuations of the shape of the Fermi surface. The main
ingredients of our construction are an effective algebra
for the local (in momentum space ) particle-hole opera-
tors valid in a Hilbert space restricted to the vicinity of
the Fermi surface and a boson coherent-state path inte-
gral constructed from these states. In particular, we get
a bosonized version of Landau’s theory of the Fermi lig-
uid in all dimensions. The coherent-state path integral
can be viewed as a sum over the histories of the shape of
the Fermi surface, a bosonic shape field. The Landau the-
ory can be found in the absence of nesting of the Fermi
surface and singular interactions between the fermions as
resulting from a bosonic action which is quadratic in the
shape fields. Moreover, the semiclassical approximation
yields the Landau equation for the sound modes.

For simplicity we will consider a system of interacting
spinless fermions (the spin index can be introduced with-
out problems in the Abelian version of the formalism). In
this paper we will concentrate on operators of the form
(14]

nq(k,t) = c_g/2(t)Cicrasa(t), (1)

where cL and ck are the creation and annihilation opera-
tor of an electron at some momentum k which obey the
{cL,ckf} = ik, where {---} is the
anticommutator and all other anticommutation relations
are zero. In particular, ng(k) is the number operator in
momentum space.

We are interested in the behavior of systems with a
Hilbert space restricted to the vicinity of the Fermi sur-
face where k is at some Fermi momentum kr and long
wave fluctuations around this point. For the moment we
are not going to discuss processes related with large mo-
mentum transfer such as backward or umklapp scatter-
ing which lead inevitably to nonlinear theories as is well
known from the bosonization in one dimensional systems
[15]. This is an open problem which must be investi-
gated further [16]. Moreover, we assume that the Fermi
surface has always finite curvature (absence of nesting)
and that the interactions are regular at the Fermi sur-
face. Our aim is to discuss only the Gaussian fixed point
associated with the Landau theory. In the limit of long
wave fluctuations around the Fermi surface the commu-
tation relation between the operators defined in (1) can
be easily obtained in the limit of ¢ — 0,

fermionic algebra,
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[na(k),n-q (k)] = — biwba,aa - Vno(k)
+2n0(k)bq,—q'q - Vi i (2)

2
The terms ignored in (2) vanish as (Fq; as the size of

the Fermi surface diverges or, what is equivalent, for op-
erators which create pairs very close to the Fermi surface
(i.e., small gq) [17].

We define the Hilbert space to be the filled Fermi sea
|[FS) and the tower of states obtained by acting finitely
on it with local fermion operators. We will replace (2)
by a weaker identity valid in the restricted Hilbert space.
In order to do that we define a cutoff, A, in the direction
normal to the Fermi surface. We will make the explicit
assumption that we are both in the thermodynamic limit
(the momenta form a continuum) and that the Fermi sur-
face is macroscopically large (qv < A < pF, where gy is
the normal component of q). Observe that no restrictions
are imposed on fluctuations tangent to the Fermi surface.
In the restricted Hilbert space it is possible to replace the
right hand side (r.h.s.) of (2) by its expectation value in
the filled Fermi sea |FS)

no(k) — (no(k)) = O(n — ex),
Vno(k) — V(ng(k)) = —vib(p — ex), ®3)

where p is the chemical potential, ek is the one-particle
fermion spectrum (from which the Hilbert space is con-
structed), and vk = Ve the velocity of the excitations.
These are exactly the same assumptions that enter in
the construction in one dimension. Notice that the state
|F'S), which is used to normal order the operators, is not
necessarily the ground state of the system of interest (as
in the one-dimensional case).

Hence, within this approximation the commutators of
the operators nq(k) become ¢ numbers, namely,

[nq(k),n—q'(K)] = b i ba,qa- Vib(p — k), (4)

where we drop the last term in the r.h.s. of (2) because
its matrix elements near the Fermi surface are down by
powers of EA;

We now normal order the operator (1) relative to the
reference state as

aq(k) = nq(K)0(q - vii) + n-q(k)O(-q-vk), (5)

where ©(x) is the usual step function. It is important to
notice that, by construction, the operator defined in (5)
annihilates the filled Fermi sea

aq(k) | FS) = 0. (6)

Moreover, from the commutation relations (4) we easily
obtain

laq(k), al, (k)] =| q - vic | 8(1 — ex) ik (ba,q + bq,-a')-
@)
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Equations (6) and (7) show that the elementary exci- It is easy to see that uqg(k) is the displacement of the
tations have bosonic character, electron-hole pairs, and  Fermi surface at the point k in the direction of q. In-
are created and annihilated close to the Fermi surface by ~ deed, suppose we change the shape of the Fermi sur-
these operators, moreover, they span the Hilbert space  face at some point k by an amount u(k). The occupa-
of low energy. It is natural now to define the coherent  tion number changes up to leading order by 6(no(k)) =

state [18] ﬂWu(k) = wd(p — ex)u(k) which is precisely
the quantity which appears in (11). Hence, the coher-
= 8
| uq(k)) = U(k) | FS), (®) ent states of Eq. (8) represent deformed Fermi surfaces
where parametrized by the bosonic field uq(k).

Next we define a many-body state which is given by

k) = —%__uq(k)al(k) ],
v = e (;2“!'“'”“( ol )> © | {u}) = [[U@) | FS) ==l [ FS),  (12)
k

where in the sum (and all other sums that follow) is im- ) ) i :
plicitly assumed that g # 0 since we want the fluctuations where, due to the commutation relation at different k’s,
with respect to the bax:k%round. Observe that from the

definition (5) we have a' 4 (k) = af,(k) and we choose =1 Uk t

uq(k) = u_q(k) for 51mp11c1ty. Using this property and Elu} = exp kz 2|q-vk| uq(k) ag(k) | - (13)
the commutation relation (7) we find a4

U~ (k) aq(k) U(k) = aq(k) +6(x — ex)vnctiq(k) (10)

which, together with (6), leads us to the eigenvalue equa- =tu] = exp (Z ut(K) aq (k)) (14)
2|q- vk Ya ’

The adjoint is simply

tion

aq(k) | uq(k)) = 6(p — ex) vic uq(k) | uq(k)).  (11) | From the above equations we obtain the overlap of two
of these coherent states,

v2 —€
({w} | {u}) = (FS | ='[w]=[u] | FS) = exp (Z Bl =5 g uq<k)) : (15)
k,q

It is also possible to find the resolution of the identity for this Hilbert space,

vEé(p — e) v26(1 — €x)
' —/ /H (2; lq- - duq(k) dug (k) | uq(k))(uq(k) |) €xp (—kz,q ;|—Q‘IRT | uq(k) |2) (16)

and we conclude, as expected, that they are overcomplete [18].

In order to study the dynamics of these modes we can construct, from (15) and (16), a generating functional as a
sum over the histories of the Fermi surface in terms of these coherent states in the form Z = [ D?u exp{i S[u]} where
S is the action whose Lagrangian density is given by (A =1)

L = E vka(p L COROAEAR )

, (17)
({u} | {u})
where H is the Hamiltonian written in the restricted Hilbert space.
Consider now the simplest Hamiltonian possible, for instance, one that is quadratic in the operators a! and a,
H=g V Y GRial (k) aq(k), (18)
kk’',q
where V is the volume of the system. Using (11) we can rewrite the Lagrangian density in the form
vE6(p — ex) b5}
Lyl = S Vel AP f— —— , ’ /
[u] k%:q e uf (k, t) (wkk 5" 7 Wk O — ex )) uq(K', t), (19)
where
wa,, = q- Vg Uy .
k,k " Gk K (20)
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Notice that this action is quadratic in the fields and,
therefore, the semiclassical approximation is exact. The
semiclassical equations of motion for this action are given
by the saddle point equation derived from L, namely,

Ouq(k,t) 1
PG = 5 S Wil gk, (2

a partial integral equation. Observe that the vectors k
are at the Fermi surface and, therefore, the above equa-
tion only depends on the solid angle, €2, and the velocity,
vk. We can therefore integrate over the magnitude of k/
and use the fact that the density of states at the Fermi
surface is given by N(0)V = 3, 6(u — €x). Therefore, in
the thermodynamic limit we replace (21) by

N
ia“qa(?’t) - S(f) / dUYWR g uq(V,t),  (22)
where Sg = [ dQ. In particular, we choose
a = ki 23
k' = N(0) + fk—ak'+q (23)

and define the angle 8 by q- vk = qur cos . It is easy to
see that Eq. (22) becomes

(Bug(@t)

En = quF cosQug(f,1)

aqy ,
+qup cosf o Fao uq(,t)  (24)
d

with Fxw = N(0)fx k. Equation (24) is the Landau
equation of motion for sound waves (the collective modes)
of a neutral Fermi liquid where fy k- is the scattering am-
plitude for particle-hole pairs [14].

To understand the reason for this result we rewrite the
Hamiltonian H in terms of the original operators (1).
Using (5) we find

H= 51‘—/- D G n_q(k)ng(K). (25)

k,k’/,q

Observe that the Hamiltonian is interacting in terms of
the original electrons. We can show [13] that the first
term in (23) gives the noninteracting part of the Hamil-
tonian which is related with the particle-hole continuum
and the second term is due to the interaction between
the electrons.

We conclude therefore that our bosons represent vi-
brations which propagate around the Fermi surface. The
solution of (24) gives the possible values for the frequen-
cies of oscillation for these modes and they will depend
essentially on the Landau parameters of the theory. The
Landau equation, (24), yields solutions which represents
both stable collective modes (“sounds”) as well as the
particle-hole continuum. This behavior is a direct conse-
quence of the phase space. Notice that in one dimension
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only the collective mode is left.

The generating functional introduced in (17) is a pow-
erful tool and we can generate all the results of the Lan-
dau theory of Fermi liquids [13]. We can also rewrite
the theory in the imaginary time and calculate thermo-
dynamic properties. In particular, the specific heat is
shown to be exactly the one expected in the Fermi liquid
theory [13]. Besides the Landau theory we can also use
our formalism to discuss possible new fixed points not
described in this paper. This is, for instance, the case of
presence of nesting of the Fermi surface or the presence
of singular interactions (such as the ones mediated by
gauge fields) [16].

In summary, in this paper we have shown that it is
possible to bosonize the particle-hole elementary excita-
tions at small momentum transfer of a Fermi liquid in any
number of dimensions consistently with the Landau the-
ory. We have shown that the bosons are a coherent super-
position of particle-hole pairs close to the Fermi surface.
We also have shown that the coherent states associated
with these excitations are related with waves which prop-
agate in the Fermi surface. Our approach gives for simple
Hamiltonian models, in the semiclassical limit, the Lan-
dau equation which describes the propagation of these
sound waves.
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