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Cellular automata models for the formation of Liesegang structures are proposed. This novel
approach, which takes into account the fluctuations for the first time, describes the problem at a
microscopic scale, in terms of reaction, diffusion, nucleation, and aggregation processes. We present
large scale numerical simulations which provide clear verifications of the time and spacing laws and
predict a novel behavior for the widths of the patterns. We show that two different microscopic
reaction schemes are possible for producing Liesegang structures and we propose a phase diagram

showing the different types of possible patterns.

PACS numbers: 82.20.-w, 05.50.+q, 61.50.Cj, 81.30.—t

Pattern formation in reaction-diffusion systems is fre-
quently encountered in nature. A particular example is
the formation of the so-called Liesegang rings or bands
[1] that were discovered at the end of the past century.
These patterns are produced by precipitation in the wake
of a moving reaction front. Many experiments exhibiting
such a pattern formation consist of a test tube containing
a gel in which a chemical species B (for example, AgNO3)
is uniformly distributed with concentration bg. Another
species A, with concentration ap (for example, HCl), is
allowed to diffuse into the tube from its open extremity
and chemically react with B. As this reaction goes on,
formation of consecutive bands of precipitate (AgCl in
our example) is observed in the tube, provided that the
concentration ag is large enough compared to by.

A striking feature of this process is that, after a tran-
sient time, these bands appear at some positions z; and
times t; that obey simple laws. More precisely, it is first
observed that the center position z,, of the nth band is re-
lated to the time t,, of its formation through the so-called
time law z, ~ y/fn. Second, the ratio p, = zn/Tn_1
of the positions of two consecutive bands approaches a
constant value p for large enough n. This last property
is known as the Jablczynski law [2] or the spacing law.
Finally, the width w,, of the nth band is an increasing
function of n.

The presence of bands is related to the geometry of the
experiment, i.e., the use of a test tube with axial sym-
metry. In more complicated situations, different shapes
may be obtained. A well known example are the rings
formed in agate rocks [1-3].

The formation of Liesegang patterns has been inves-
tigated by many researchers. The models proposed so
far belong to three categories [4]: sol coagulation mod-
els, competitive particle growth models, and supersatu-
ration models. Although none of these models is able
to account for all experimental observations (like inverse
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banding [5]), we believe, following Prager [6], Zeldovitch
et al. [7], Smith (8], Dee [9], and Le Van and Ross [10],
that the supersaturation mechanism based on Ostwald’s
ideas [11] plays a crucial role in the band formation.

Within this framework, two scenarios have been stud-
ied. In the first one [4, 6-8], the A and B species coexist
in the gel until the solubility product ab reaches a criti-
cal value k,,, above which nucleation occurs according to
the reaction A+ B — AB(solid). Using ad hoc boundary
conditions and crude nucleation law, the spacing laws can
be established analytically (8].

In the most recent scenario [9], the two species A and
B react to produce a new species C which also diffuses.
When the local concentration of C reaches some thresh-
old value, nucleation occurs. The nucleated particles D
at the reaction front deplete their surroundings of the re-
action product. As a result, the level of supersaturation
drops dramatically and the nucleation process stops. Af-
ter some time, the reaction front has moved away and
the concentration of product at the moving front reaches
a large enough value, allowing the nucleation to occur
again, and separated bands will appear.

This process is described in terms of rate equations for
the local densities of A, B, and C. In appropriate units,
they read

dia = 82a — Kab, (1)
_ (Do) 5

Byb = ( Da> 82b — Kab, )

dic= (—g—f) d2c + Kab — u, (3)

where D; is the diffusion constant for the species i, &
is the reaction constant, and u the nucleation and ag-
gregation term. Because of diffusion, the reaction front
position z ;(t) obeys the relation z4(t) ~ /£, with an am-
plitude depending on the difference of the concentrations
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a and b [12]. This is the origin of the well understood
time law.

Different expressions for u obtained from the theory of
homogeneous nucleation and droplet growth have been
used by Dee [9] and Le Van and Ross [10], leading to
a system of coupled nonlinear partial differential equa-
tions. When solved numerically, these equations exhibit
oscillatory solutions for the density of precipitate, which
are interpreted as bands.

In the approach of Dee [9] and Le Van and Ross [10],
only very few bands are produced from the numerical so-
lution. Accordingly, the verification of the spacing law is
not convincing and little can be said about the existence
of a width law. In addition, their approach is mean field
in essence. It is impossible to describe patterns, such as
spirals, in which there is a symmetry breaking due to the
presence of local fluctuations [13]. Moreover, it is well
known that even without symmetry breaking the fluctu-
ations may play a very important role in the kinetics of
some reaction-diffusion processes [14].

Accordingly, an approach based on a microscopic
model in which the essential features of the kinetics are
included would provide a better description of the forma-
tion of Liesegang structures and, in particular, of their
microscopic structure (fractal dimension, for instance).

In this Letter, we propose a novel and promising micro-
scopic approach to the Liesegang phenomenon in terms
of a cellular automata [15]. The essential mechanisms are
modeled in a simple way, without a priori discontinuities
in the boundary conditions. We propose simple cellular
automata rules for controlling nucleation and aggregation
in terms of two free parameters.

When these control parameters are suitably chosen,
Liesegang bands emerge naturally from our model and
well obey the time law and the spacing law. We show
that the widths w,, of the bands grow with n according
to a power law w,, ~ z% and that all these properties can
be obtained in both Prager-Zeldovitch and Dee scenarios.
The same model can also be used to study other situa-
tions, such as the formation of rings in two-dimensional
gels where the A species diffuses from a point source. Pre-
liminary results [13] for cylindrical-like geometries show
that spiral-like patterns breaking the cylindrical symme-
try can emerge in our model, due to the presence of local
density fluctuations. This situation is in perfect agree-
ment with experimental facts.

i s A ¥ it X i ’ - ¥
x=0 direction of the moving front

Our model is defined on a two-dimensional square lat-
tice. Particles of types A, B, and C perform a simulta-
neous random walk as described in Ref. [16]. When an
A and a B particle meet at the same site, they disappear
and produce a C particle with probability  [17,18]. At
the initial time, the left part of the system (z < 0) is
randomly occupied by A particles with a density ag and
the right part (z > 0) is filled with B particles with a
density bp. The initial densities ap and bp, the diffusion
constants, and the reaction constant x are free parame-
ters.

The new ingredients in the model concern the nucle-
ation and aggregation mechanisms. On general grounds,
based on local supersaturation theory [19], we have im-
plemented the precipitation as follows: once the local
density of C particles (computed as the number of parti-
cle in a small neighborhood) reaches the threshold value
Ky, they spontaneously precipitate and become D par-
ticles at rest (nucleation). The C particles located in the
vicinity of precipitate D particles will aggregate, pro-
vided that their density is larger than an aggregation
threshold K, < K,p. If a C sits on top of a D it always
becomes a D. The parameters K, and K, are the two
main control parameters of the model. The introduction
of these critical values refers to the qualitative models of
solidification theory, relating supersaturation and growth
behavior [4].

Our model has been implemented on 8k processors
Connection Machine CM-2. Results of simulation (tak-
ing 10 h of CPU time) for systems composed of 64 lay-
ers with 512 sites along the direction of motion of the
front (z axis) and 64 sites along the perpendicular di-
rection are shown in Fig. 1. After a transient regime,
well defined bands are formed, which obey the expected
laws. The law z, ~ /t is well satisfied, as a signature
of the diffusion process. The spacing law, Tp/ZTn-1 — P,
is clearly verified already for small n, as shown in Fig.
2. From these data, one finds p = 1.08, a value well
in the range of the experimental findings (typically, one
observes 1.05 < p < 1.15 for different cases).

Liesegang bands are only obtained for a narrow inter-
val of the parameters. The same difficulty is present in
real experiments [4]. Outside of this region, other types
of patterns are produced, as shown in the qualitative
phase diagram given in Fig. 3. We named these pat-
terns homogeneous clustering, amorphous solidification,

2

FIG. 1.

Example of Liesegang bands as obtained from the simulations of our cellular automata model. The values of the

parameters are bo/ag = 0.01, Dy/Dy = Dc/D, = 0.1, ksp/ao = 1.39 x 1072, and kp/ao = 6.07 x 1073.
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FIG. 2. \Verification of the spacing law for the situation
shown in Fig. 1. The Jablczynski coefficient is found to be
p = 1.08.

and dendrites, in agreement with the usual classification
[17,20], and several examples of them will be given in a
forthcoming publication [13].

The control parameter K, is directly related to the
critical supersaturation, while K, influences the growth
rate of the bands in a way which can be found through
numerical simulations. The precise dependence is cur-
rently under investigation.

The need for investigating larger systems and reducing
statistical noise led us to speed up our algorithm. In or-
der to keep the advantages of our microscopic description
we have adapted to our problem the Boltzmann lattice-
gas technique [21]. To restore the fluctuations suppressed
in the lattice Boltzmann approach, the nucleation and
aggregation processes take place only with a given prob-
ability when the concentration reaches the critical value
ksp or kp. We have verified that this noisy version of
the Boltzmann approach is able to reproduce the generic
laws of the Liesegang structures. This strategy allows
us to gain a factor 100 in the speed of the simulation
and to produce up to 30 consecutive bands for systems
of sizes 1024 x 64. All the results obtained (time law,
spacing law) are similar to the ones given by the cellular
automata model, up to a renormalization of K,, — kp
and K, — kp.

An interesting property of these bands is the behavior
of the width w,. Little is known about its dependence
on n. Experimental data [22] and numerical predictions
[9] suggest a linear dependence. However, the number
of bands considered to support this claim is too small to
be conclusive and the experimental data have large error
bars. Because of the large number of bands obtained with
our method, we have been able to extract a more accurate
behavior which can be expressed by the following new
law:

wy ~ 22 ()

We found that « is independent of k,p, but depends on
the initial concentration by and ag. We have obtained
values of a which are clearly smaller than 1 and are in
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FIG. 3. Phase diagram showing the different possible pat-
terns that can be obtained with our cellular automata model,
as a function of the values of k,p and kp.

the range 0.5-0.6, as shown in Fig. 4. From relation (4), it
follows that the width law can be written as wy, /wy,—1 —
p*.
The scenario due to Prager and Zeldovitch is still of
importance for reactions in which the existence of the
diffusing C species cannot be established. We have imple-
mented this scenario in a lattice Boltzmann model with,
in addition to the previous diffusion dynamics for A and
B, the following rules: (i) A+B — AB(solid) if the solu-
bility product ab > k,p; (ii) in the vicinity of precipitate,
A and B aggregate if ab > ky; (iii) on the top of a precip-
itate particle, A and B aggregate provided that ab > k;
k and k, are such that £k < k, < kep. The depletion
of A and B resulting either from nucleation or aggrega-
tion lowers the solubility product to the stationary value
ab = k. The simulations resulting from this approach
also lead to bands of precipitate {13], obeying the same
formation laws as described previously.

In conclusion, our approach is able to reproduce the
main experimental features of the Liesegang structures
and go beyond. As shown by our phase diagram, it pro-
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FIG. 4. Dependence of the width w, of the Liesegang
bands as a function of their position z,, for various values
of ap — bp with ao x bp = 0.01. From left to right, the lines
correspond to by = 0.0094, 0.0096, 0.0098, 0.012, 0.014, and
0.016. One obtains w, ~ 23 with a decreasing from 0.61 to
0.49.
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vides a unified framework for understanding the role of
the supersaturation values in producing other precipita-
tion patterns encountered in solidification processes. We
have confirmed on large scale simulations that the es-
sential microscopic mechanisms leading to these patterns
were the interplay between a moving reaction-diffusion
front and the rate of the nucleation-aggregation pro-
cesses. We have proposed a simple mechanism, much
in the spirit of theoretical growth models, for control-
ling precipitation. Our approach, based on Ostwald su-
persaturation arguments, shows clearly that models with
or without C both give a consistent description of the
Liesegang phenomenon, as opposed to what is claimed in
the literature [23]. Experimental tests of the width law
we have predicted here would give an additional confir-
mation of the validity of our models.
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FIG. 3. Phase diagram showing the different possible pat-
terns that can be obtained with our cellular automata model,
as a function of the values of k,, and k.



