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We investigate the O(n) model on the honeycomb lattice, using its loop representation in the
limit of full packing. The universal properties, which we calculate by melm of finite-size scaling
and trans$er-matrix techniques, are difFerent from the branches of O(n)cr, itical behavior known thus
far. The conformal anomaly of the model varies between —1 and 2 in the interva1 0 & n & 2. The
universality class of the model is characterized as a superposition of a low-temperature O(n) phase,
and a solid-on-solid model at a temperature independent of n.

PACS numbers: 75.10,Hk, 64.60.Ak, 64.60.Fr, 64.60.Kw

The O(n) model consists of n-component spins s =
(si, sq, . . . , s„) on a lattice, with isotropic couplings [1].
Thus, the Boltzmann weight associated with the inter-
action between a pair (s, t) depends only on the scalar
product of the spins: it has the form to(s t). Accord-
ing to the assumption of universality, the critical behav-
ior of this model does not depend on the precise choice
of the function to, at least not within reasonable limits.
It is very fortunate that the possibility arises to choose
tU(s t) = 1+xs t where x plays the role of the inverse

O(n) temperature. As a consequence of this choice, the
O(n) partition integral takes the form

Zo(„) = ~ sI, 1+2:s, s~ &
1

( k ) (i,s1

where each spin is integrated over the surface of an n-

dimensional sphere with radius ~n The secon. d product
is over all pairs of nearest neighbors. Equation (1) can
be rewritten [2] as the partition sum of a loop model,

~O(n} = ~loop = Na NI,

all g

where g is a graph covering Ng bonds of the honeycomb
lattice, and consisting of N~ closed, nonintersecting loops.
Thus the variables n and x play the role of fugacity of the
loops and covered bonds, respectively. The O(n) model

has positive definite Boltzmann weights only for jx] &
1jn, and ferro- or antiferromagnetic interactions for x &
0 or 2: & 0, respectively. In contrast, the loop model is
physical for all positive x. Our present knowlegde of the
O(n) model in two dimensions is largely based on this

mapping and its analog for the square lattice [3—8].
A third interpretation of the partition sum is that of

a triangular n-component corner-cubic model, in which
each spin component independently takes one of the val-

ues +1. Neighboring spins may be difFerent in at most
one component, so that interfaces between regions of dif-

ferent spins appear as loops on the honeycomb lattice.

Bonds between equal spins and those between different
spins carry local Boltzmann weights 1 and x, respectively.

The weak coupling (high-temperature) limit of the
O(n) model corresponds to the low density regime of the
loop model, and the strong coupling (low-temperature)
limit of the cubic model. High density in the loop model
corresponds to antiferromagnetism in the cubic model
and the unphysical regime of the O(n) model.

Whereas the degrees of freedom of the loop model (i.e. ,

bonds are absent or present in g) are discrete, the spin
dimensionality n appearing in Eq. (2) can be considered
a continuous variable. For the special choice [3]

x-' =2+i/2 ,n- (3)
the model is exactly solvable [4—6]. The solution has two
branches corresponding with the two signs in Eq. (3).
These branches play the following role in the inferred

phase diagram [3,9] shown in Fig. 1. Branch 1 (with
x 2 & 2) is the O(n) critical line separating the disor-

derd phase at small x from the spin-ordered phase at
large x. Thus, under renormalization, branch 1 acts as
a line of unstable fixed points. Branch 2 (with x z & 2)
lies in the ordered phase and plays the role of a line of
stable fixed points [9] describing that phase, commonly
known as the low-temperature phase of the O(n) model.
According to Eq. (2), it is equivalent to a system of
densely (but not fully) packed loops. Thus we refer to
branch 2 as the DPL (densely packed loop) model. The
deduced renormalization fiow is indicated in Fig. 1 for

one value of n.
Since each loop covers an even number of edges of

the honeycomb lattice, the sign of x is redundant, and
the phase diagram is symmetric with respect to the
line x = 0. This symmetry forbids that points with

x ~ = 0 belong to the domain of attraction of the low-

temperature O(n) fixed line with x i ) 0, or that with

x i & 0. Therefore, it seems plausible that the line

x ' = 0 plays the role of an unstable fixed line, and
we may expect new universal behavior. For this value of
x i, only those configurations contribute to Eq. (2) in
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2
fl, = lnAo,

L
(4)

x'
+ lr

I

and the next-largest eigenvalues A, (i = 1, 2, . . .) deter-
mine correlation lengths Q, ,, according to

2 Ap' -~~a'A
so that the associated correlation functions gi, ;(r) over
a distance r along the cylinder behave asymptotically as

(
02

FIG. 1. Phase diagram of the O(n) model on the honey-
comb lattice as a function of n and the relative weight x of
an empty vertex. The model is exactly solvable on the curve
shown. The full part (branch 1) separates the disordered O(n)
phase at large 2: kom the low-temperature phase at small
z '. The dashed part of the curve (the DPL model) is in-

terpreted as a line of stable 6xed points. Since the model is
symmetric with respect to the sign of z, the line z ' = 0 (the
FPL model) acts as an unstable fixed line.

which all vertices are visited by a loop. Since the coor-
dination number is 3, only two-thirds of all lattice edges
are covered by a loop. However, since the lattice cannot
accommodate a higher density, we refer to this line by the
fully packed loop (FPL) model. We note that there is no
direct relationship between the honeycomb FPL model
and the Potts model (such a relation does exist for other
lattices [10]).

The FPL model is the subject of our investigation.
A first question is whether its universal behavior cor-
responds to known classes. Besides the branches 1 and 2
mentioned above, three other branches have been found
in the square lattice O(n) model [7,8]. One of these is
called "branch 0" and is exactly equivalent [7] with a
critical q-state Potts model with +q = n+ 1. This rela-
tion is not the one due to Temperley and Lieb [10] which
reads ~q = n and applies, via arguments of universality,
to branch 2. Branch 3 describes a higher order criti-
cal point where an O(n) and an Ising critical line merge
into a first-order line [7]. Branch 4 ean be interpreted
as a superposition of a critical Ising model and a low-
temperature O(n) model.

To investigate the universal properties of the FPL
model, we have used the transfer-matrix technique de-
scribed in Ref. [9]. The inodel is wrapped on an infinitely
long cylinder, with the axis parallel to one of the three
edge directions The fi. nite-size parameter I is defined as
the number of elementary hexagons spanning the cylin-
der, which defines the unit of length as ~3 times a lattice
edge. The transfer matrix adding one layer of hexagons
is denoted T. Its largest eigenvalue Ao determines the
free energy fi, per unit of area,

The theory of conformal invariance predicts that [11,12]

(7)

where c is the conformal anomaly [13],and that the scaled
gape satisfy [14]

I(l, 2m X,.,

where X; is the scaling dimension of the observable cor-
related by gL, ;.

Thus we have determined the conformal anomaly c,
and two scaling dimensions Xq and Xp, from numeri-
cally calculated eigenvalues of T for values of L up to
15. The dimension Xq is determined by the two largest
eigenvalues of T associated with translationally invari-
ant eigenstates, in analogy with the determination of the
temperature exponent of O(n) models at finite temper-
atures [5,7]. However, the second-largest eigenvalue for
the FPL model is n, ot the continuation of that for finite-
temperature O(n) models: intersection of eigenvalues oc-
curs at packing densities above that of branch 2. It is
natural to associate X, with the temperaturelike variable
X-1.

The magnetic dimension Xg was determined from the
ratio of the leading eigenvalue of T and that of a modi-
fied transfer matrix obtained by adding one loop segment
running in the length direction of the cylinder [7]. This
segment can be closed into a loop by closing the cylinder
into a torus. The eigenvalue ratio thus obtained for the
FPL model is the analytic continuation of that used for
the finite-temperature O(n) model [9].

Since the finite-size results display oscillations as a
function of I with period 3, only multiples of 3 were used
in the analysis. The transfer matrix of the FPL model
contains a conserved quantity: the number of noninter-
secting strings as described in Ref. [15]. This leads to a
factorization of T in invariant sectors. Apart from this
factorization, the calculations were analogous to those of
Ref. [9].

Furthermore, the results are restricted to n & 0 be-
cause of an intersection of eigenvalues: a different (ap-
parently unphysical) eigenvalue of T dominates the spec-
trum for negative n The extrapolat. ion procedures lead-
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TABLE I. Numerical results for the conformal anomaly c,
the magnetic dimension Xg, and the temperature dimension
X& of the fully packed loop (FPL) model. For comparison, we
include the conformal anomaly and the scaling dimensions
Xp, y = 260, & and X&,2 = 2b, &,2 (using the notation of Ref.
[17]) of the low-temperature O(n) model and the equivalent
densely packed loop (DPL) model.

CFPL

0.0 -1.000 (0)
0.5 0.180 (2)
1.0 1.000 (5)
1.5 1.59 (1)
2.0 2.00 (1)

DPL

-2
-0.820

0
0.588

1

XFPLt
0.750 (5)
0.86 (2)
1.00 (1)
1.16 (1)
1.46 (1)
XDPL

1,2
-0.25
-0.129

0
0.155
0.5

0.0
0.5
1.0
1.5
2.0

ing to our best estimates shown in Table I are described,
e.g. , in Ref. [16].

It is obvious from these data that the fully packed loop
model behaves difFerently from the five known branches
of O(n) critical points. Our results do, however, reveal
a relation with the low-temperature O(n) model and the
equivalent DPL model:

cFpr = cDPL + 1 = 2 —6(1 —g) /g
X = X = 1 —1/(2g)

FPL XDPL + 1 3g/2

where g = (1/z) arccos( —n/2). The pairs of subscripts
apply to the conformal classification of scalar operators
(i.e., X„~= 2b,& z [17] ). In the DPL model the exponent
Xo, p governs the asymptotic behavior of the probability
that two lattice points lie on the same loop, as can be
deduced from a mapping on the Coulomb gas [18]. Thus,
the corresponding transfer-matrix eigenvalue is expected
in the sector characterized by two loops spanning the
long dimension of the torus. Indeed, numerical results
confirm this, for the DPL as well as for the FPL modeL
In the latter model, the largest eigenvalues in the sectors
with one and with two loops in the length direction of
the torus appear to be identical.

For comparison, the relevant quantities of the DPL
model are included in Table I. The data agree well with
the identification made above except for some small de-
viations at n = 2. These can be satisfactorily ex-
plained by slowly converging logarithmic corrections at
the Kosterlitz-Thouless critical state [19], which occurs
both at the point where branches 1 and 2 meet and at
lower O(n) temperatures at n = 2 [9].

Thus the FPL model displays simultaneously the uni-
versal properties of a low-temperature O(n) or DPL
model and those of a model with c = 1 and X» ——1.

This observation is in hne with an exact mapping of the
n = 1 FPL model on a solid-on-solid (SOS) model. This
mapping [15] is summarized as follows. (i) Remove those
edges of the dual (triangular) lattice that do not intersect
a loop (see Fig. 2). This leads to a "diamond" tiling of
the plane. (ii) Interpret the tiling three dimensionally,
i.e. , as a stack of cubes, or a crystal surface projected
in the (1,1,1) direction. For n = 1, the loop weights are
unity and therefore the SOS weights are strictly local.

This SOS model has c = 1 [20]. It is also equivalent
with the zero-temperature antiferromagnetic Ising model
on the triangular lattice [15]which has a temperature di-
mension Xq ——1 [21]. These two exact, results coincide
with the corresponding entries in Table I, in agreement
with the interpretation of the FPL model as a superpo-
sition of a low-temperature O(n) (or DPL) model and
an SOS model. The low-temperature O(1) model (the
point on branch 2 at n = 1) does not contribute to c
and X&. it is a frozen, zero-temperature ferromagnetic
Ising model on the honeycomb lattice. Furthermore, for
n = 1 the variable x corresponds with the Ising tem-
perature in the zero-temperature antiferromagnetic Ising
model on the triangular lattice, in agreement with our
earlier assumption that Xq is associated with x

For n g 1 the configurations of the fully packed loop
model may still be identified as the configurations of the
SOS model, but now the weights have a nonlocal compo-
nent due to the fugacity of the loops. The model can be
viewed as having both loops and SOS variables in inti-
mate relation. From the numerical results for the central
charge and the exponents we are led to the remarkable
conclusion that the interaction between the two types of
variables is irrelevant, so that the critical behavior is that
of the superposition of the two models. Since SOS expo-
nents are temperature dependent, and the SOS contribu-
tion to X, is constant, the renormalized temperature
of the SOS model does not depend on n, .

This interpretation of the FPL model as a superposi-
tion of two models is analogous to that of branch 4 of

V i'

FIG. 2. Relation between the degrees of freedom of the
FPL model on the honeycomb lattice and those of an SOS
model on the triangular lattice.
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the O(n) model on the square lattice [7]. In that case
the loop model configurations contain Ising-like degrees
of freedom, and the universality class is that of decoupled
Ising and lour-temperature O(n) models, even though
both models are interwoven on a microscopic level.

The conformal anomaly reaches a value as high as 2
for n ~ 2. High values of c have earlier been reported
in models describing the fully frustrated XY (FFXY)
model [22,23]. This invites a comparison between the
FFXY and the n = 2 FPL model. Frustration in the
FFXY model is introduced by changing the sign of pre-
cisely one spin-spin interaction in each elementary face.
In the language of the loop model [Eq. (2)] this corre-
sponds with one negative bond weight in each elemen-
tary face. In this sense, frustration is absent in the FPL
model. However, the zero-temperature triangular antifer-
romagnetic Ising model, which is dual to the n = 1 FPL
model, is fully frustrated. This frustration is reflected in
the present FPL model by the fact that a graph g can
cover only two-thirds of the edges of the honeycomb lat-
tice. This suggests the possibility of frustrationlike phe-
nomena in other loop models, for instance on the square
lattice, when the vertex weights are chosen such that not
all edges can be covered by g.

Finally we discuss the largenbeh-avior of the FPL
model. The numerical evidence concerning the finite-
size scaling behavior of the magnetic gap shows that the
model is not critical for n )) 2. The limit n ~ oo maxi-
mizes the number of loops and thus leads to a close pack-
ing of hexagons, resembling the ordered state of the hard-
hexagon model. Local excitations appear in the form of
loops that are somewhat larger than the elementary faces
and do not destroy the long-range ordered state. In SOS
language, this is a flat phase. Thus a roughening tran-
sition takes place in the FPL model when n varies. Our
numerical data indicate that this transition is located at
n ( 3, and are consistent with the natural value n = 2.
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