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We describe the application of path integrals to the problem of light propagation in turbid media. The
photon propagation process is separated into an absorption dependent part and a part that depends only
on scattering. We determine the nonabsorption photon path and nonabsorption probability distribution
function, from which other measurable optical parameters can be obtained. As an example, we calculate
the diffuse reflectance for a semi-infinite medium and obtain a new result which reduces to a previously
derived expression in the approximate limiting case.

PACS numbers: 42.25.Bs, 05.60.+w, 78.20.Dj

The propagation of light in a multiply scattering ("tur-
bid") medium has long been studied in astrophysics and

atmospheric optics [1], and recently has become impor-
tant in medical applications [2]. The theory of radiative
transfer is widely used to treat this problem by consider-
ing the transport of light energy through a random medi-
um and neglecting the wave properties [1,3]. The basic
equation in transport theory is the equation of transfer,
for which analytic solutions cannot be obtained for most
realistic problems. Solutions are often based on the iso-
tropic diffusion approximation, whose primary assump-
tion is that enough scattering events have occurred so
that the diff'use radiation is approximately uniformly
scattered in all directions. This approach fails near boun-
daries or sources and when applied to highly anisotropic
scattering media for early times. Nonetheless, the dif-
fusion approximation is applied in many instances to ob-
tain approximate solutions [3].

In the present paper we present a new physical picture
for treating energy transport in a multiple scattering
medium, which we call "the path integral approach to
photon migration" (PI). This picture uses the Feynman
approach to statistical problems based on his path in-

tegral formalism [4], and provides analytic results to the
equation of transfer without the need for making the
diffusion approximation. It gives new insight into the
propagation of light in a turbid medium by making expli-
cit the most probable path taken by photons as they
traverse the medium. Below, we compare our results to
those of time-dependent diffusion theory [5-7].

Recently, Bonner and co-workers have analyzed multi-
ple scattering transport using an approach called "photon
migration" [8,9]. They calculate the probability distribu-
tion for the number of steps required by a photon injected
into a semi-infinite scattering medium to be emitted at an
arbitrary point on the surface. The medium is represent-
ed by a three-dimensional cubic lattice and scattering is
assumed to be isotropic.

The PI picture also treats light scattering as a proba-
bilistic process, but with a different formalism. The
medium is considered to be continuous and scattering
need not be isotropic. The evolution of a photon is

characterized by two parameters, the photon weight [10]
and the no abso-rption photon path [11]. When a photon
injected into the medium interacts with a particle, it is

considered to have a probability a p, /(It, +It, ) of being
scattered and probability 1

—a It,/(p, +It, ) of being
absorbed, with a the albedo and It, and It, the scattering
and absorption coefficients, respectively (i.e., the proba-
bilities per unit length that the photon is scattered and
absorbed) [3]. Thus, after each interaction the photon
weight is reduced by a factor a, and the photon travels
freely in a direction determined by the phase function,
which is the probability distribution for the photon to be
scattered in a particular direction, until its next interac-
tion with the medium. For a semi-infinite medium all
photons are eventually reemitted, but with reduced
weights depending upon the photon path. In PI the ab-
sorption event is viewed as changing the photon weight
according to the albedo, whereas the no-absorption pho-
ton path is fully determined by the scattering phase func-
tion and the boundary conditions, but independent of the
albedo. The experimentally observed diffuse reflectance
is equal to the sum of the weights of all the photons
which traverse all possible paths. Such separation of al-
bedo from other optical parameters provides good analyt-
ic models in turbid media for diffuse reflectance, trans-
mittance, and fluorescence [11].

This probabilistic picture, and especially the concept of
the "no-absorption photon path,

" permits the introduc-
tion of Feynman path integrals in a very natural way,
"due to the ability of path integrals to deal directly with
the notion of the probability of a path" [4]. It can be
shown that this approach constitutes a rigorous reformu-
lation of the equation of transfer [12,131. Transport
theory is built around a Boltzmann-like kinetic equation
for the probability distribution function f(r, v, t) to find
single photon at an arbitrary moment of time t at position
r with velocity v. We can also introduce the probability
distribution function P[r(t)] for a photon to travel along
a path r(t) that starts at [r, (0),v, (0)] at time t =0 and
finishes at [rf(T),vf (T)] at t =T. Once P[r(t )] is
known, f(r, v, t) can be found using path integrals [4].
The method of deriving P[r(t)] directly from the scatter-
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ing phase function is discussed below. Because time ap-
pears so naturally in this formation, it is very easy to con-
nect these results with the work on time-dependent opti-
cal spectroscopy being carried out by Chance and co-
workers [6,7].

To illustrate the method we calculate the difl'use

reAectance, R, in the semi-infinite geometry for index-
matched boundary conditions. In the PI picture R is the
sum of all the photons, appropriately weighted, exiting
the medium [11]

f OO

R(p„p„g)ga"f„(g)= a"f„(g)dn,
1

where f„(g)is the nonabsorption probability distribution
function for a photon being reemitted after n interactions
with the medium, and g is the mean cosine of the scatter-
ing angle. Since in the semi-infinite geometry all photons
eventually escape from the medium surface and are
detected, the normalizing condition

gf„(g)- f„(g)dn- I
1

is required. The problem thus reduces to determining

f„(g).In an earlier paper f„(g)was approximated by
fitting Monte Carlo generated curves [11]. Here we

derive f„(g)from first principles.
In photon migration the photon's path is formed as a

result of the very large number of interactions with the
medium. Every interaction randomly changes the direc-
tion of the photon's motion mostly by a small angle. For
convenience we chose a two-dimensional normal distribu-

tion as the phase function [14]:

p(a) -(2 contr')
' exp( —a'/2 a),

where d =Jh„,+As, and h. ..A~; &&1 are the projec-
tions of the deflection angle on the local coordinate sys-

tem (x',y', z') with the z' axis chosen along the photon's

propagation direction before the scattering event. Here

g = dA, ,dh~; p(Jh„,+6„,)cosh,

and g = l —e for small e.

I i {0,0) (Xf,0)

FIG. l. Path integral picture of photon migration: actual and

average classical paths. The actual path as well as classical
path need not lie in the plane.

with 8, the angle the photon makes with the z axis and

d8=8„dt the variation in the photon's angle in the x-z
plane during time interval dt. Because 8„(t)is a random

function with a normal distribution, we can write for the

probability to observe this function [4]

P(8„,(t) ) =exp —(2p, (x') ' 8„,(t) 'dt

This means that the photon escape probability through

the surface point (xf,0), with angle 8„,=8f can be writ-

ten as a path integral:

We calculate f„(g)by considering the propagation of
photons in the medium with p, =0. The number of
scattering events in time interval dt is p, dt (Th. e speed
of light in the medium is taken to be unity. ) We choose
the entry point as the origin of the laboratory coordinate
system, define the normal to the surface at this point as
the z axis, and choose the line from the origin passing
through the exit point as the x axis (Fig. 1). To simplify,
we assume that the photon travels in the x-z plane and

calculate the photon's resulting average classical path
which closely approximates the classical paths of all pho-
tons that enter the medium at the origin at normal in-

cidence and terminate at the given exit point. (A classi-
cal path is that path which minimizes the classical action
[4].) The motion in any other plane can be treated simi-

larly.
Along the photon's path,

x(t)'+z(t)'-8„,(t)',

tion of the Euler's equation for such a Lagrangian is not

trivial. An approximate solution can be obtained by em-

ploying the initial conditions that the velocity is equal to

unity along the z axis at the origin, the final conditions

that x(T) =xf, z(T) =0, x(T) =v, z(T) =v„and set-

ting the average square of the velocity over the path equal

to unity. Treating the motion in the x and z directions as

independent, we obtain the following approximate equa-

tions of motions: V=O and"=-=0. These equations, along

L(r, r, t) =x(t) +z(t) +g(t)[x(t)z+z(t)' —1], (6)

~here g(t) is a Lagrange multiplier. The analytical solu-

fO 7

f[xf,8I, T]- exp —(2p, )0'„[x(t)'+z(t)']dt 2)x(t)Sz(t),

where Sx(t)J)z(t) means integration along the difTerent

paths that satisfy initial and final conditions. The term in

the exponent of Eq. (5) is an "effective classical action"
for a photon in a highly scattering medium; it must be
supplemented by the additional condition x +z =c
The eAective Lagrangian of the photon in such a medium
is
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FIG. 2. Comparison of PI and MC simulation of the nonab-

sorption probability distribution function, f„(g),as a function
of the number of scattering events, n, for tr2=0. 3 (g-0.757)
and tr2 0. 1 (g 0.908).

FIG. 3. Diffuse rellectance, R, calculated from Pl (solid

lines) and MC simulation (points) as a function of the ratio of
the scattering coe%cient to the absorption coeScient, for o

0.3 (g 0.757) and a2-0. 1 (g 0.908).

with the conditions at t =0 and t T, give the following average classical photon path:

x (t ) = (Tv» —2xf ) (t/T ) + (3xf —Tv» ) (t /T ), z (t ) = T(1 +v, ) (t/T ) —T(2+ v, ) (t/T ) + t'.

Integrating Eq. (5) first along the above path and then xf, and taking into account the velocity condition, we obtain

(7)

f(ef, T) =c
Epsg T

1/2

2xpgo' T

1/2

exp —
2

[P+9/5(v, +7/12) ]1

ps(x T
(8)

with C a normalization constant and P 2.68. Integrat-

ing over v„we obtain an expression for the probability
for the photon to return to the surface at time T:

' 1/2

T exp — . (9)
pso' T

R(p„p„g)=exp —2 Pdi
—lna (10)

Again, this expression agrees with MC simulations (Fig.

Equivalently, we may write f„(g)=f(T), with T=n/p,
and P,ir(g)—=P(l —g)/cr . This function, which is actual-

ly the time-dependent diff'use reflectance for p, =0, varies

with time in the same way as that calculated from the
time-dependent diff'usion approximation in Ref. [7]. [In
Ref. [7] the numerical coefficient corresponding to P,a is

0.75. Using a more appropriate boundary condition from
Ref. [3] in the time dependent diffusion approximation
gives P,ii=0.75(1 71) =2.19.) For the highly forward
scattering case, g =0.908, where the diff'usion approxima-
tion is poor, PI gives P,a=2.47. For the more isotropic
case, g 0.757, PI gives P,ii=2. 17.

In order to test the validity of Eq. (9), we used a
Monte Carlo (MC) program with a Gaussian phase func-
tion. Comparison of the numerical simulation with the
analytical results, shown in Fig. 2, shows excellent agree-
ment between the two methods, indicating the validity of
our approximation within PI.

The steady-state diAuse reAectance can be obtained
from Eq. (1) using Eq. (9). This gives

~ 1/2-

3). We note that in the derivation the escape probability

can be explicitly obtained as a function of the coordinates

(x,y) on the surface of the sample and the escape angle,

Hf, as well as the number of scattering events, n. Conse-

quently, the diff'use reflectance can be calculated as a
function of these variables. Note that this result can be

readily inverted.
These results are very encouraging and indicate the po-

tential of Pl. Work is in progress to extend the calcula-
tions to other geometries and boundary conditions. We
are examining the feasibility of removing the approxima-
tions made in deriving the classical path, and will report
this work in the future. Of greatest significance, particu-

larly in medical applications, is the ability to solve the in-

verse problem, i.e., given external optical measurements,
to be able to infer the distribution and composition of em-

bedded inhomogeneities, such as diseased tissue embed-

ded in normal. In addition, the explicit picture of the
most probable photon path given by PI provides beautiful

physical insights into the light scattering problem.
This work was supported in part by NIH Grant No.
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