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%e consider a system in which a classical oscillator is interacting with a purely quantum mechan-
ical oscillator, described by the Lagrangian L = 2x + 2A —

2 (m +e A )x, where A is a classical
variable and x is a quantum operator. With (x(t)) = 0, the relevant variable for the quantum oscil-
lator is (x(t)x(t)) = G(t). The classical Hsmiltonian dynamics governing the variables A(t), II&(t),
G(t), and IIa(t) is chaotic so that the results of making measurements on the quantum system at
later times are sensitive to initial conditions. This system arises as the zero momentum part of the
problem of pair production of charged scalar particles by a strong external electric 6eld.

PACS numbers: 05.45.+b, 03.65.Sq

The definition and observation of chaotic behavior
in classical systems is familiar and well understood [1].
However, the proper definition of chaos for quantum sys-
tems and its experimental manifestations are still un-
clear [2]. Here we present a simple model of a cou-
pled quantum-classical system and introduce a new phe-
nomenon that we call semiquantum chaos. In a classical
chaotic system such as the weather we are accustomed to
situations where there is lack of long time forecasting be-
cause of the sensitivity of the system to initial conditions.
The simple model we present here has the unusual feature
that one has to give up long term forecasting even for the
quantum mechanical probabilities, as exemplified by the
average number of quanta at later times. The complete
dynamics of the coupled quantum and classical oscillators
is described by a classical effective Hamiltonian that is
the expectation value of the quantum Hamiltonian. This
effective Hamiltonian displays chaotic behavior, and thus
the parameters that describe the quantum mechanical
wave function (and hence expectation values) are sensi-
tive to initial conditions. Chaos in dynamical systems
with both quantum and classical degrees of freedom has
been noted in more complicated systems and in a differ-
ent context by other authors (see, e.g. , [3]).

We consider a system in which a classical oscillator is
interacting with a purely quantum mechanical oscillator
described by the Lagrangian

now introduce time-independent Heisenberg representa-
tion creation and destruction operators, a and at, by the
ansatz

and we note that if f(t) satisfies the Wronskian condition

then a and at satisfy the relation [a, at] = 1. From (2)
and (5), we find that f(t) satisfies the equation of motion

f + (m'+ e'A') f = 0, (7)

t

f(t) = exp i O(t')dt'—
0

/20(t),

where A(t) satisfies the nonlinear differential equation

with
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co2(t):—m +e2A (t).

(8)

with the normalization fixed by the Wronskian condition

(6). We can satisfy these two equations by the substitu-
tion

lx2 + 1A2 1(m2 + 2A2) 2

with equations of motion given by

x+ (m'+ e'A')x = 0,
A+ezx A=O.

The Hamiltonian is

1 2+ 1112 + 1( 2+ 2A2) 2

(2)

(3)

(4)

Now, we choose the initial state vector at t = 0 to be
the ground state of the operator ti = ata, l@(0)) = l0),
where al0) = 0. Then, from (5), the average (classical)
value of x(t) and p(t) is 0 for all time, (x(t)) = 0 and

(p(t)) = 0. However, the quantum fluctuations of x(t)
are nonzero and are given by the variable G(t),

G(t) = (*'(t)) = lf(t)l' =
2~ t

. (Io)

Then, from (8), it is easy to show that G(t) satisfies

where p(t) = x(t) and II~ = A(t). We take x(t) to
be a quantum operator and A(t) to be the amplitude of
the classical oscillator. We require [x(t),p(t)] = i We.

1
&+co =0.
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In addition, we find that

G('(t)) = G+ G. (12)

or equivalently

A+e GA=O,

The expectation value of Eq. (4) becomes a new efFective
Hamiltonian

2 LG) 4 (G)
1 2=2+a =0,

H, ff = (H(t))
II2"+ 2IIGG+ + -(m'+ e'A')G.

which correspond to (11) and the expectation values of
Eq. (3).

The classical efFective Lagrangian is

The conjugate momenta are L,ff = + — —-(m +e A )G.

II~=A, (14) This Lagrangian could also have been obtained using
Dirac's action,

This classical Hamiltonian determines the variables,
G and G, necessary for a complete quantum mechanical
description of this system. Hamilton's equations then
yield

dt(e(t)Li H[e(t)) = dt L fft

and a time-dependent Gaussian trial wave function as
described in [4]. This variational method was used to
study the quantum Henon-Heiles problem in a mean-field

(15) approximation [5]. The Gaussian trial wave function is
parametrized as follows:

~

2 1 1
~Q 2~@ + 4)8Gz 2

ll~ = —e AG,

~(t) = [2«(t)] "'exp(-[*—q(t)]'[G '(t)/4- illa(t)] + ip(t) [~ —q(t)])

We see that G(t) and II~(t) are the time-dependent real
and imaginary parts of the width of the wave function.
One can prove for our problem that if the quantum os-
cillator starts at t = 0 as a Gaussian, it is described
at all times by the above expression, where G(t) and
IIG(t) are totally determined by solving the efFective
Hamiltonian dynamics. [For our special initial condi-
tions p(t) = q(t) = 0.] Thus we find that our effec-
tive Hamiltonian totally determines the time evolution of
the quantum oscillator. One interesting "classical" vari
able is the expectation value of the time-dependent adi-
abatic number operator, which corresponds to the num-
ber of quanta in a situation where the classical A field
is changing slowly (adiabatically). For the related field
theory problem (see below) of pair production of charged
pairs by strong electric fields, this corresponds to the
time-dependent single particle distribution function of
secondaries. To find the expression for the number of
quanta, we begin with the wave function corresponding
to a slowly varying classical field A:

t
g(t) = exp —i ~(t')dt' /2cd(t),

0

in terms of which we can decompose the quantum oper-
ator via

*(t) = g(t) b(t) + g'(t) b'(t) .

Requiring the momentum operator to have the form

p(t) = z(t) = g(t) b(t) i g (t) b'(t)

L

by imposing g(t)b(t) + g'(t)bt(t) = 0, and recognizing
that g(t) and g'(t) satisfy the Wronskian condition by
construction, then b(t) and bt(t) have the usual interpre-
tation as creation and annihilation operators. That is,

[x(t),p(t)] =i and [b(t), bt(t)] = l. Also

b(t) = [g (t)*(t) —g (t) (t)].

bt(t)b(t) can be interpreted as a time-dependent number
operator for a slowly varying (adiabatic) classical field
A. The time-independent basis and the time-dependent
basis are both complete sets and are related by a unitary
Bogoliubov transformation, b(t) = a(t) a+P(t) at, where

~(t) = i[g (t)f(t) —g'(t)f(t)]
P(t) = i[g' (t)f'(t) —g' (t)f' (t)]

and where Ln(t)]z —LP(t)L = l. If we choose for initial
conditions, A(0) = ur(0), Q(0) = iu(0), then one finds

that a(0) = 1 and P(0) = 0. These are the initial con-
ditions appropriate to the field theory problem of pair
production. The average value of the time-dependent
occupation number is given by

(20)

Equation (20) allows us to compute the average occupa-
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tion number of the system as a function of time.
We first scale out the mass by letting t -+ m t, A -+

m ~ A, G ~ m G and e ~ ems~ Then the scaled
equations of motion are

is positive. We define

z(zo + 6, t) —z(z„t)
(22)

A+e GA=O, where z(zs, t) is a point in phase space at time t with
initial position zs. Then the time evolution for t7(t) is

+1+e A =0. (21) r)(t) = rI(t) r7F 1.(...t), (23)
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In order to explore the degree of chaos as a function of
(scaled) energy and coupling parameter e, we calculated
surfaces of section and Lyapunov exponents. The surface
of section is a slice through the three-dimensional energy

shell [1]. That is, for a fixed energy and coupling param-
eter the points on the surface of section are generated
as the trajectory pierces a fixed place (e.g. , A = 0) in
a fixed direction. The hallmark of regular motion is the
cross section of a KAM torus which is seen as a closed
curve in the surface of section. The hallmark of chaotic
motion is the lack of any such pattern in the surface of
section. In Fig. 1 we show a plot of a surface of section
at E = 0.8 and e = 1 where regular and chaotic regions
coexist.

The Lyapunov exponent provides a more quantitative,
objective measure of the degree of chaos. The Lyapunov
exponent, A, gives the rate of exponential divergence of
infinitesimally close trajectories [6]. Although there are
as many Lyapunov exponents as degrees of freedom, it is
common to simply give the largest of these. For regular
trajectories A = 0; for chaotic trajectories the exponent

where

z(t) = F(z(t), t) (24)

Appendix A of Ref. [6] provides an explicit algorithm for
the calculation of all the Lyapunov exponents. Since we
cannot carry out the t -+ oo limit computationally, the
regular trajectories are those for which A(t) decreases as
1/t, while the chaotic trajectories give rise to A(t) that
is roughly constant in time, as judged by a linear least-
squares fit of in[A(t)] vs ln(t).

We calculated the Lyapunov exponents for three val-

ues of the scaled coupling constant e (0.1, 1.0, 10.0) and
for energies from 0.5 to 2.0. E = 0.5 is the lowest energy
possible, corresponding to the zero point energy of the os-
cillator; there is no upper limit on E. 50 initial conditions
were chosen at random for each energy bin of width 0.1
and coupling parameter. One relevant quantity to study
is the chaotic volume, the fraction of initial conditions
with positive definite Lyapunov exponents (correspond-
ing to chaotic behavior). Errors in this quantity arise
because of the finite number of initial conditions chosen,
and because the distinction between zero and positive
exponents cannot be made with certainty at finite times.
We found that for e = 0.1, more than 95% of trajectories
were regular for all energies tested; for e = 1.0 and 10.0,
there is a steadily increasing fraction of chaotic orbits in
the range 0.5 & E & 1.25. For 1.25 & E & 2.0, more
than 90% of these orbits are chaotic.

We may now ask what are the physical ramifications
of our results. The system of equations studied here is
the It = 0 mode contribution to the problem of pair pro-
duction of charged mesons by a strong electric field [7],
with E(t) = —A(t) being the value of the time evolving
electric field. For that problem the equation for G(t) gets
modified and becomes a function of the momentum k of
the normal modes of the charged scalar field. Equation
(9) being replaced by A&2(t) ~ u&~(t) = [k —eA(t)]~ +m~.

The semiclassical equation for A(t) becomes

are the full equations of motion for the system. The
Lyapunov exponent is defined as

A
—= lim —ln

q(t)
t~oot g0

FIG. 1. A plot of the surface of section for energy = 0.8,
e = 1.0, and A = 0. Each symbol represents a difFerent
trajectory. The one chaotic region is in the center of the plot.

A=e dkk —eAt G'k t, (26)

which gets contributions from all modes. This system of
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The expression for the number of particles in a given
momentum bin k is

/ ) 2
—1 2 1 J OA 4)k

n(k, t) = (40',~g) (Ag —~g) +—
4 i Ag (dy)
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which should be compared with Eq. (20). The chaotic
behavior of Eq. (20) is shown in Fig. 2 (also see Fig. 3 of
[7]).
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FIG. 2. A plot of the occupation number given by Eq. (20)
for energy = 1.8, e = 1.0, A(0) = 0, IIG(0) = 0. The solid

line is for G(0) = 0.5; the dashed line is for G(0) = 0.5001.
This plot shows the sensitivity to initial conditions.

equations is discussed in detail in [7]. When we sum over
all the k modes, A(t) becomes a smooth function of time
and is insensitive to initial data. However, the number of
particles produced in a narrow bin of momentum between
k and k+dk depends only on GA, (t) and Gg(t). Only if one
does a coarse graining over momentum does one lose this
sensitivity to initial data. Thus one should observe, as
one counts the number of produced charged particles in

a detector and increases the resolution, that the number

of counts in a narrow momentum bin becomes a rapidly
oscillating function of time whose behavior is chaotic.

' Permanent address: Theoretical Division, Los Alamos Na-

tional Laboratory, Los Alamos, NM 87545. Electronic ad-

dress: cooperpion. lani. gov

[1] M. Tabor, Chaos and Integrability in Nonlinear Dynamics
(John Wiley and Sons, New York, 1989); IIamiltonian Dy
namical Systems, edited by R. S. MacKay and J. D. Meiss

(Adam Hilger, Bristol, 1987).
[2] A. Ozorio de Almeida, Hamiltonian Systems: Chaos and

Quantization (Cambridge University Press, Cambridge,
1988); M. C. Gutzwiller, Chaos in Classical andQua, ntum

Mechanics (Springer-Verlag, New York, 1990); L. E. Re-
ichl, The &ansition to Chaos: In Conservative Classical
Systems: Quantum Manifestations (Springer-Verlag, New

York, 1992); B. Eckhardt, Phys. Rep. 168, 205 (1988);
J. Stat. Phys. 68 (1992), a volume devoted to Quantum
Chaos.

[3] L. Bonilla and F. Guinea, Phys. Rev. A 45, 7718 (1992).
[4] F. Cooper, S-Y Pi, and P. Stancioff, Phys. Rev. D 84,

3831 (1986).
[5] A. Pattanayak and W. Schieve, Phys. Rev. A 46, 1821

(1992).

[6] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano,
Physica (Amsterdam) 16D, 285 (1985).

[7] Y. Kluger, J. Eisenberg, B. Svetitsky, F. Cooper, and
E. Mottola, Phys. Rev. Lett. 67, 2427 (1991).

1340




