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Observation of Induced Subcritical Bifurcation by Near-Resonant Perturbations
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We present the first experimental evidence that near-resonant perturbations produce a destabilizing
shift of a subcritical bifurcation. This is in direct contrast to supercritical bifurcations, where near-
resonant perturbations always suppress the instability. Using a normal form analysis we derive a generic
scaling law relating the magnitude of the destabilizing shift p to the perturbation amplitude e and detun-
ing frequency 8. The predictions are in excellent agreement with our experiments. In the limit of very
small b the shift obeys a pure scaling law, p tx (e) 2t3.

PACS numbers: 05.45.+b

It is we11 known that any time-periodic nonlinear sys-
tem is sensitive to near-resonant perturbations [ll when

tuned near its bifurcation point. Moreover, since the
essential dynamics reduce dramatically near a bifurca-
tion, the system response obeys universal scaling laws.
This has been demonstrated in a number of experiments
including those on electrical circuits [2], NMR lasers [3],
charge-density waves [4], spin waves [5], bouncing balls

[6], Josephson junctions [71, and magnetostrictive oscilla-
tors [8]. For sufficiently small perturbations, linearized
theories accurately predict the observed scaling behavior.

More recently, attention has turned to intrinsically
nonlinear effects which arise for somewhat larger near-
resonant perturbations. One such effect is the stabilizing
shift of the bifurcation point: Near the onset of a super-
critical bifurcation, periodic perturbations always act to
suppress the instability. This effect has been observed in

experiments on analog circuits [9], Josephson junctions
[71, and magnetostrictive ribbons [8]. Theoretically, a
normal form analysis of supercritical bifurcation has been
successful in predicting (among other things) the scaling
law for the shift as a function of the perturbation ampli-
tude and frequency [9]. It was suggested that the oppo-
site effect should occur for a system tuned near a subcriti-
cal bifurcation, i.e., that the instability would be induced
rather than suppressed, though no quantitative analysis of
the subcritical case exists.

In this Letter, we present clear experimental evidence
that near-resonant perturbations produce a destabilizing
shift near a subcritical period doubling bifurcation. Our
measurements are performed on an as-cast (i.e., unan-
nealed) magnetostrictive ribbon in a time-dependent
magnetic field. While this system is known to display a
rich variety of nonlinear dynamical behavior [10], no ac-
curate theory for the dynamics of the ribbon is available;
nevertheless, close to the bifurcation point we can make
quantitative predictions by using the appropriate normal
form which depends only on the bifurcation "type. " In
our case, we use the normal form appropriate to a sub-
critical period doubling bifurcation, from which we derive
a closed form expression for the size of the shift as a
function of the perturbation frequency and amplitude.

While our focus here is to study generic nonlinear
effects, the problem of near-resonant perturbations is

especially relevant to this system since the dynamic mag-
netostrictive response has been successfully exploited to
detect very small magnetic fields [11]. We detect the
nonlinear dynamical strain response of the magnetostric-
tive oscillator with a fiber optic (FO) interferometer cap-
able of resolving dynamic (f& 1 kHz) strain on the order
of 10 ' . It is thus possible to make extremely accurate
strain measurements. Dynamic strain response of a mag-
netorestrictive oscillator has been used to study a variety
of nonlinear phenomena including stochastic resonance
[12], the (supercritical) noise rise near the bifurcation
point and period doubling suppression [8] and control of
chaos [131.

The experiment involved measuring the dynamic strain
response of a magnetically driven Fe7s8~3S9 amorphous
magnetostrictive ribbon (Metglas 2605S-2) using a
fiber-optic Mach-Zehnder interferometer. A small por-
tion (( 5 mm) of the ribbon (50 mmx 12 mmx25 Itm)
was bonded to the optic fiber comprising one arm of the
interferometer. The phase shift of light propagating in

the fiber attached to the ribbon is a direct measure of
strain in the ribbon. The interferometer was contained in

a solenoid which was driven by a two channel frequency
synthesizer (HP 3326A), providing a longitudinal mag-
netic field H =Hd, +hpcos2trfpt, where Hd, is the applied
dc field and hp is the amplitude of the sinusoidally vary-
ing pump field. The perturbing signal, h

~ cos2trf ~t, where
h

~ and f ~
are the amplitude and the frequency, respec-

tively, of the perturbing signal, was added with the
second channel of the synthesizer. The power spectral
density output of the strain response was measured with a
dynamic signal analyzer (HP 3562A) and the amplitudes
of the applied magnetic fields were obtained by measur-
ing the voltage drop across a 1 0 resistor in series with
the solenoid. The experimental arrangement has been de-
scribed in previous work [8,10,12].

Figure 1 shows clearly that a near-resonant perturba-
tion induces the onset of a subcritical bifurcation. For
the unperturbed case (h~ =0) the magnetostrictive oscil-
lator displayed a distinct period doubling bifurcation for
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approximate analytic expression describing the shifted bi-
furcation point in terms of ~ and 6' from the augmented
normal form [Eq. (I)]. The first step is to find the sym-

metric periodic solution xp(l) of Eq. (1). Using the
method of harmonic balance [15],we take

xo(r) =Bcos(6t+y)+

where the ellipses represent higher harmonics. Substitut-
ing this into Eq. (I ), ignoring the higher harmonics, and

balancing the fundamental Fourier terms yield a cubic
equation for B

(2)

ac Magnetic Field Pump Amplitude h (Oersted)
0 PP

FIG. I. Experimental data sho~ing induced subcritical bi-
furcation by near-resonant perturbation: (a) subcritical period
doubling bifurcation curve corresponding to the unperturbed bi-

furcation case (h~ 0), (b) hi l mG, (c) h~ =2.7 mG, and
(d) h~ 6.8 mG. The fixed experimental parameters were

fo 9.55 kHz, Hd, 1.56 G, and B=O. I Hz (corresponding to
b 10 5). The data were obtained with a fiber optic inter-

ferometer from the nonlinear strain dynamical response of a
driven magnetostrictive oscillator.

The shifted bifurcation point can be obtained by
finding the point where the symmetry breaking bifurca-
tion occurs. Linearizing the normal form about the
periodic solution xo =x —g, one has immediately

j= [p+3xo2(r)]ri.

The perturbation g gro~s exponentially if the time aver-

age of p+3xo(t) is positive: rf decays if it is negative.
From our approximation for xo(r), the time average of
[xo(t)] ' is 8'/2 so that

ha=0. 25 Qe with fo 9.55 kHz and Hd, =1.56 Oe. The
strain response at fo/2 was detected with a lock-in

amplifier (LIA) and plotted as a function of the bifurca-
tion parameter (ho). The introduction of a perturbing
periodic signal (h i )0) was found to shift the bifurcation

point in such a way as to induce the subcritical bifurca-
tion. The bifurcation shift was expected and found to be
a function of the perturbing signal strength hi and detun-

ing, h=(fo/2 f~(. For d—=0. 1 Hz, Fig. I shows the
measured strain response at fo/2 as a function of the bi-

furcation parameter hti for various values of hi. The be-

havior is in direct contrast with the case of supercritical
bifurcations: Near-resonant perturbations induce subcrit-
ical bifurcations and suppress supercritical bifurcations.

In order to understand the effects of periodic perturba-
tion on a subcritical bifurcation we use the augmented
normal form [9],

x =px+x +ccos(bl), '

where @=0 represents the unperturbed system of Eq. (I)
and e is proportional to the strength of the near-resonant
perturbation (hi) and 8 is proportional to the detuning

frequency. This is really a continuous time approxima-
tion of a one-dimensional map, which in the unperturbed
case (@=0) rigorously described the dynamics near the
bifurcation point [14]. Augmenting the normal form

with the periodic term is on less firm footing, though it

can be justified within the context of perturbation theory
[6]. The key point is that the period doubling bifurcation
of the full nonlinear system coincides with a symmetry
breaking bifurcation of Eq. (I). Our goal is to find an

pg+ 2 B =0,

Combining this with Eq. (2) yields the desired result

pg+46 pg+6s =0. (3)

Since Eq. (3) is a cubic equation it is possible to find a
closed form solution for p~ in terms of 6 and e. Since all

coefficients are positive, there can only be one real root
and it will be negative. This means that the bifurcation
shift due to the near-resonant perturbation is in the direc-
tion which tends to induce the instability. This is exactly
what was observed experimentally (Fig. I).

The exact solution to the cubic [Eq. (3)] is

pg =S++S—,
where

S — —3e 8 +9m
64
27

,

t/2 ]/3

(4)

In the small detuning limit (6 0) Eq. (4) provides a

simple scaling law relating the shifted bifurcation point to
the perturbation signal,

= ( —6) '"(e)'" (5)

To test Eqs. (4) and (5) experimentally, we need to re-

late the normal form parameters p, e, 6 with the corre-

sponding experimental parameters ho, hi, and A. In prin-

ciple, a center manifold reduction ~ould determine the
need proportionality constants. In our case, since we do
not even have the original dynamical equations, deriving

the constants is impossible. In fact, only two free con-

stants are needed: In terms of the experimental parame-
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FIG. 2. Scaling law relating the shifted bifurcation point to
the strength of the perturbation signal is shown for extremely
small detuning frequency, b 10 7. The data are fitted by 2/3
power law predicted by Eq. (5). The shifted bifurcation point p
and the normalized perturbation amplitude e are related to the
experimental parameters, pump amplitude hp, and perturbation
signal amplitude hi as follows: p [(hp —ho, )/hp, )Kl and
e (hi/ho)K2 where ho, is the bifurcation point of the unper-
turbed system.

ters the most general form would be

dy
dt

k ly+k4y
Oc

h lk3 i coo/2+ cos k2t
Oc No

where hp, is the bifurcation point of the unperturbed sys-

tem and kl, k2, k3, and k4 are arbitrary constants relat-
ing p, b', and e to hp, 5, and hl. By proper change of
variables this equation can be rewritten as

x=px+x +ecos(bt),

where p = [(ho —ho )/hoejk i/k2 = [(ho hoc)/howl Ki
and e (hi/hp)(k3/k2)(k4/k2) ' =(hi/hp)K2. The con-
stants K[ and K2 can be determined from one set of data
relating perturbation amplitude with the bifurcation shift
and then be kept "fixed" for all subsequent data sets (i.e.,
detunings). The results depicting the fit to the theory are
shown in Figs. 2 and 3. In Fig. 2 the shifted bifurcation
point as a function of perturbation amplitude is shown for
extremely small detuning, b/f p =b =10 . The experi-
mental data plotted on a log-log scale and fitted by Eq.
(5) fall on a straight line with a slope equaling 2/3.

As the detuning increases the "pure" scaling law [Eq.
(5)] is replaced by a functional dependence, p(e, b) de-
scribed by Eq. (4). Figure 3 shows experimental results
for the bifurcation shift as a function of perturbation am-
plitude for larger detunings, b/fp=b=IO and b/fp
=8=10 . The experimental data shown in Fig. 3 were
fitted by Eq. (4). The theory does an excellent job of fol-

FIG. 3. Experimental results showing the shifted bifurcation
point to the perturbation signal strength and the fit by Eq. (4)
for somewhat larger detunings (a) b 10 ~ and (b) b 10

lowing the data. The pure power law scaling behavior is

replaced by two regitnes: (i) extremely small perturba-
tion where the bifurcation shifts as a power of 2 with

respect to hi and (ii) large perturbations where the 2/3
power law is retrieved. These two regimes were recovered

by taking the limit e small and e large with b&0 in

Eq. (4). The range of perturbation signal strength in

Figs. 2 and 3 spans over 2 orders of magnitude while the
detuning spans a range of 4 orders of magnitude.

One of the applications of these ideas can be in the
area of bistable devices. The approach can be utilized to
"tune" the switching characteristics of optical or electri-
cal bistable systems, for instance, to reduce the switching
voltage or to reduce the switching optical power.

In conclusion, we demonstrate for the first time that
near-resonant perturbations tend to induce subcritical bi-
furcation which is in contrast to the effect observed in su-
percritical bifurcation. The destabilizing shift has been
found to be a function of the perturbation signal strength
and the detuning frequency. An augmented normal form
used to analyze experimental results reveals a "generic"
closed form expression describing the shifted bifurcation
point to the detuning and the perturbation signal
strength. For extremely small detuning a scaling rule
elating the bifurcation shift to the perturbation signal
strength is retrieved with a critical exponent equal to 2/3.
The experimental data obtained for various detuning are
fitted by the expressions derived from normal form
analysis. The theory agrees quite well with the experi-
mental data over a wide parameter range (several orders
of magnitude).
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port from an ONR postdoctoral fellowship.
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