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Tunneling of a Quantized Vortex: Roles of Pinning and Dissipation

Ping Ao and David J. Thouless
Department of Physics, FM I5,-University of WashingtonS, eattleW, ashington 98195

(Received 9 August 1993)

We have performed a theoretical study of the effects of pinning potential and dissipation on vortex
tunneling in superconductors. Analytical results are obtained in various limits relevant to experiment.
In general we have found that pinning and dissipation tend to suppress the effect of the vortex velocity
dependent part of the Magnus force on vortex tunneling.
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To address the question of the resistance of a supercon-
ductor at zero temperature, a clear understanding of vor-
tex tunneling is needed. Despite ample experimental evi-
dence for vortex tunneling in superconductors [1], the
theoretical study is of dimensional analysis in nature [2,3]
and controversial [4]. Furthermore, in vortex tunneling
there is no comprehensive study of the role played by the
Magnus force, a force with a part proportional to the
magnitude of vortex velocity but perpendicular to the
direction of the velocity. This is a very unsatisfactory sit-
uation, in view of the facts that the Magnus force is a
general property of a vortex [5] and tunneling is extreme-
ly sensitive to dynamics. In this paper we present an

analytical study on vortex tunneling in the presence of the
Magnus force, with special attention paid to the efl'ects

of pinning and dissipation. A general picture of those
eA'ects on vortex tunneling can be obtained from our
study.

We start with the Hamiltonian for a vortex. To make
the presentation simple, we consider vortex tunneling in a
semi-infinite superconductor film which defines the x-y
plane. The supercurrent is along the x direction, and the
edge of the film is lying on the x axis. The length scale in

the present study is always much larger than the size of a

vortex core. A vortex can then be regarded as a point
particle, and as discussed in Ref. [6] its effective Hamil-
tonian can be generally written as
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with the vector potential A determined by Vx A
=hp, dz/2. The meaning of each term in Eq. (1) is as
follows. The vector potential reflects the existence of the
vortex velocity dependent part (VVDP) of the Magnus
force F~ -q, , hp, d(v, —r) xz/2. The Magnus force de-
pends on the relative velocity between the superfluid ve-

locity v, and the vortex velocity r', and the superfluid ve-

locity dependent part (SFVDP) of the Magnus force will

contribute to the vortex potential V. In accordance with
the calculation of tunneling, the vector potential will be
taken as

A —p, d(y, 0,0),

V(r) = Vi(y)+ —,
' k„x (3)

and it can be shown that results are independent of the
choice of gauge. Here q,, =+1 ( —1) stands for the vor-
ticity parallel (antiparallel) to the unit vector z in the z
direction, h is the Planck constant, p, is the superfluid
electron number density with the factor 2 counting for
the Cooper pairing, and d is the thickness of the film. %e
take the vortex mass M to be finite as demonstrated in

Ref. [6], and will show that it is relevant to vortex tunnel-
ing. The vortex potential V contains both the contribu-
tions from the SFVDP Magnus force and pinning centers.
In the following we shall take Vto be of the form

which allows an extensive analytical study. The pinning
potential of a pinning center in the x direction is approxi-
mated by the harmonic potential, and k„should be deter-
mined experimentally. The potential Vi(y) consists of
the contributions from the SFVDP Magnus force and the
pinning potential in the y direction, which has a metasta-
ble point at y 0 in the present paper. In the limit of no

pinning (an ideal semi-infinite film) and extreme type II,

Vi (y) =—p, d —voy+ ln(y)
h 6
2 2m

(4)

In the present paper, we shall assume the spectral func-

tion to have the following form:

only the contribution from the SFVDP Magnus: the po-

tential due to external supercurrent vo and the image po-
tential from the edge of the superconductor film. Here

I, is the mass of a Cooper pair. The dissipative environ-

ment of the vortex, the last term in Eq. (1), consists of a
set of harmonic oscillators as formulated in Ref. [7]. The
eAect of the dissipative environment is specified by the
spectral function
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J(a)) = rtto'exp[ —co/to„},

with co, the cutofF frequency whenever needed. In accor-
dance with Ref. ["/], s & 1 is the super-Ohmic case, s =1
the Ohmic case, and 0~s & 1 the sub-Ohmic case. In
the Ohmic damping case, g is the vortex friction such as
discussed in Ref. [8]. Although the problem here is for-
mulated for a vortex tunneling from an edge into a film, a
problem directly related to the decay of a supercurrent at
zero temperature, the present formulation is equally appl-
icable to the case of a vortex tunneling out of any meta-
stable well with a potential approximated by Eq. (3). In

that case, the form of V~(y) may be completely different
from Eq. (4).

A remark on the relationship between the present study
and others is in order. We note that the vortex motion is

identical to the motion of an electron in the presence of a
magnetic field [9]. Results obtained in the present paper
can then be directly applied to that case with q, , replaced
by electron charge e and hp, /2 by magnetic field 8 [10].
For the case of a vortex in superfluid He, the superfluid
electron pair number density p, /2 should be replaced by
the superfluid helium atom number density p, [11].

The tunneling is described by the Euclidean action
[7,9, 10]

S= dr ~ —Mr +i q,,p, d—xy+ V~(y)+ k„x —+g m—jqi+ moto~—qi
— r (7)

where P I/ktt T is the inverse temperature. The tunneling rate is equal to exp[ —S,/h}, where the semiclassical action
S, is determined by the bounce solution of the equation BS=0, in which the periodic boundary condition,
(r(hP), [qj(hP)}) (r(0), [qi(0)}), is required.

We are interested in the vortex tunneling out of the metastable state y =0. After the tunneling in the y direction oth-
er degrees of freedom can take arbitrary value. Therefore the summation over the final states, integrations over environ-
mental degrees of freedoms, [q;},and over the x coordinate, will be taken. The effective Euclidean action after the in-
tegrations is

t hp t hp t hp
S,a „dr[yMy +V~(y)]+ —,

' dr dr'[k(~r —r'~)+g(r —r')][y(r) —y(r')] (8)

with the normal damping kernel k(r ) as

k( )
1 d ( )

cosh[to(hp/2 —r)] (9)
sinh [tohP/2]

and the damping kernel g(r) due to the VVDP Magnus
force coupled x-direction motion, which we shall call the
anomalous damping kernel, as

OO 2Mtox+ jn iv„f
2
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Here
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(10)
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rt
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v„=2trn/hp, and to, k„/M. In the large r limit, from
Eqs. (6) and (9) the normal damping kernel takes the
form

which demonstrates the one-to-one correspondence be-
tween the low frequency part of the spectral function and
the long time behavior of the damping kernel. Now we
have obtained an effective one-dimensional problem, Eq.
(8), with the normal and anomalous damping kernels
k(r) and g(r). This is the starting point for the follow-
ing detailed study of the tunneling in various experimen-
tally accessible limits.

No pinning, no dissipation —Without d. isorder and dis-
sipation, there is no quantum decay of supercurrent in an
infinite film [12]. In reality such as discussed in the
present paper the film always has an edge; tunneling is
possible. To see the role played by the VVDP Magnus
force, we first study the case with no dissipation and no
pinning. Because of the VVDP Magnus force, motions in
the x and y directions become coupled to each other.
Therefore although here the normal damping kernel
k(r) 0, the n=0 mode in the anomalous kernel g(r)
contributes to the effective action. Then the effective ac-
tion is

hp 1 I 1 +hp ~hp
S,a = dr 2 My + V((y) + p, d dr —dr'[y(r) —y(r')]2

4M 2
' hP"o (13)

We note that in the language of spectral function, this corresponds to the sub-Ohmic bath case with s =0 [cf. Eqs. (12)
and (8)], and Eq. (13) is explicitly gauge invariant under the change y y+const, because of the periodic boundary
condition of x imposed in the tunneling calculation.

Fow low enough density p„ that is, for a weak VVDP Magnus force, there is a tunneling solution. Particularly, for
very low density arId low temperatures the semiclassical action may be evaluated perturbatively:

f OO

1 hS, = dr[i My~ (r)+ V&(y, (r))]+ —p, dC g 2 C 2M- 2

f+ OO
1 goo

dr y,'(r) —
g dr y, (r) (14)
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d V~ (y)

barrier top

(I s)

Thus we have obtained that the s =0 dissipative environ-
ment is marginal for localization in tunneling decay, com-
pared to the s= 1 for the case of tunneling splitting [14].
This is the dynamical localization caused by the VVDP
Magnus force [12]. It is worthwhile to point out that ac-
cording to Eq. (IS) although a large VVDP Magnus
force inhibits vortex tunneling, a large vortex mass in-

stead favors vortex tunneling.
JVo pinning, finite dissipation Now.—we set the pin-

ning potential k„/M=co~=0 in Eq. (10). But the nor-
mal damping kernel k(r) and the anomalous damping
kernel g(r) are finite. Since the quantum tunneling cor-
responds to the limit of large imaginary time, AP

where y, (r ) is the bounce solution at zero temperature
without the VVDP Magnus force. Equation (14) shows a
remarkable p, dependence and linear temperature depen-
dence [13].

For high enough density, that is, for a strong VVDP
Magnus force, the tunneling rate vanishes at zero temper-
ature, because the VVDP Magnus force renormalizes the
original potential such that the state near y=0 is stable.
This can be noted from Eq. (13) where as T 0 the
cross term in the last term disappears. A straightforward
calculation leads to the criterion for the localization as

we look for the large time limit behavior of the anoma-
lous damping kernel g(r ). In this limit, we may replace
the summation I/hP+„by the integration (I/2') fdv.
Then for the environment 0 & s & 2, we find the anoma-
lous damping kernel g(r ) in the large r limit as

r ' 2

g(r) =a —p, d
1 h 1 1

2+M 2 r 2 '+' (i6)

with a a numerical constant of order unity. Here

2 g z
g dz

z M "0 z2+1 '

and J(co) =ilgwu' has been used. The effective dissipative
environment corresponding to the anomalous damping
kernel is s,a =2 —s [cf. Eqs. (6) and (12)l, which leaves
the Ohmic damping unchanged, transforms the sub-
Ohmic damping into super-Ohmic damping, and vice ver-
sa.

For the case s & 2, using Eq. (6) for the spectral func-
tion J(ra), we find that the effective dissipative environ-
ment corresponding to the anomalous damping kernel is

s,p=0, which smoothly connects the result for 0 & s & 2.
An important example is the Ohmic damping case,

where an exact expression for a in Eq. (16) can be ob-
tained. Carrying out a detailed but straightforward cal-
culation, we find the effective action at zero temperature
as

a oo Qoo woo

S,a= dr[-,'my'+V)(y)]+ ri,a dr dr', , [y(r) y(r)]', —
r —r''

with the effective damping strength ri, a as

hp, d
gee. =g+ (i9)

2 g

The effect of a dissipative environment can now be
summarized as follows. It has been demonstrated in Ref.
[14] that the sub-Ohmic dissipation has strong effects on

tunneling, while the super-Ohmic dissipation has weak
effects. From the above analysis we have that if the nor-
mal damping kernel k(r) is sub-Ohmic, the anomalous
damping kernel g(r) is super-Ohmic, and vice versa.
Then according to Ref. [14] the effect of the VVDP
Magnus force, represented by the anomalous damping
kernel, is weak (strong) on vortex tunneling for the nor-
mal sub-Ohmic (super-Ohmic) damping. In particular,

for normal super-Ohmic damping with s & 2, the vortex
tunnels as if there were no effect of dissipation. For the
normal Ohmic damping with s =1, we need to compare
the relative strength of the VVDP Magnus force and the
dissipation according to Eq. (19). Classically, the VVDP
Magnus force tends to keep a vortex moving along an

equal potential contour, but the friction instead down the
potential to compete with the VVDP Magnus force. In

general, we can then conclude that the dissipation tends
to suppress the effect of the VVDP Magnus force on vor-
tex tunneling.

Finite pinning, no dissipation. —The normal damping
kernel vanishes in this situation. The anomalous damping
kernel can be expressed by hyperbolic functions. We find

that the effective action is then

r AP ] ii &~I t r8, co cosh[ate„(hp/2 —~r —r'~)]
5,&= dr [ —,

'
My + V~(y)]+ —p, d dr J dr' [y(r) y(r')] —. (20)

4M 2 "0 o 2 sinh [co„hP/2]

It is the super-Ohmic case with s,g
=~, because the

effective spectral function has the form of 8(r0 —ru„),
which has no low frequency mode. Therefore the tunnel-
ing rate is nonzero for any magnitude of the VVDP
Magnus force. This result shows that pinning has a very
strong influence on the vortex tunneling in the presence of
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the VVDP Magnus force, because the introduction of the

pinning potential of a pinning center bends the straight
line trajectory of a vortex and makes the transition to
other trajectories possible. We note that by letting co, =0
we recover Eq. (13), where the tunneling rate vanishes

for a sufficiently strong VVDP Magnus force.
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We can evaluate the semiclassical action perturbative1y
if the density is low or if the pinning potential is strong,
as is done in Eq. (14). In the large density limit the
semiclassical action may be evaluated by a variational
method similar to Ref. [7] in the case of Ohmic damping.
However, we have a more powerful method to perform
the calculation, because the strong VVDP Magnus force
freezes the kinetic energy of the vortex. In this case x
and y coordinates now form a pair of canonically conju-
gate variables, and the Euclidean action is [9,10]

~hp 1S,n dr i—q,.p,dxy+V~(y)+ —k,x . (21)

Following the calculation outlined in Refs. [9,10], we find

the semiclassical action in the form

&/2

S, hpd dy
2V, (y)

(22)
x

with y, the turning point determined by the equation

V~(y) =0 [15]. The result shows that as k„ increases, the

semiclassical action decreases. Therefore a large pinning

potential in the x direction helps the tunneling in the y
direction [16].

General case: Pnite pinning and disst'pation .I—n gen-

eral we need to go back to Eqs. (8)-(11) to study the

tunneling under the influence of pinning and dissipation.

However, based on the insight gained by the above

analysis we can draw a general conclusion without a de-

tailed study: Since both dissipation and pinning tend to

suppress the effect of the VVDP Magnus force, the total

effect of them will do the same. Indeed the anomalous

damping kernel is always super-Ohmic In. particular, in

the presence of strong pinning and Ohmic damping, the
super-Ohmic-like anomalous damping kernel g(z) may

be ignored compared to the Ohmic normal damping ker-

nel k(r ). Then from Eq. (8) we have the effective action

as

Sa 40

fn gp 1 hp t hp
dr[ & My +V~(y)]+ " dr dr', [y(z) —y(z')]

2tr "o "o [r —r'ji' (23)

which looks as if there were no effect of the VVDP
Magnus force. This may explain the pronounced experi-
mental observation of the absence of the effect of the
VVDP Magnus force in vortex tunneling experiments on

dirty superconductors [I]. It is worthwhile to point out
that, stimulated by Ref. [7], Eq. (23) has been studied

extensively.
To summarize, we have performed a complete analyti-

cal study of the influence of pinning and dissipation on

vortex tunneling. The VVDP Magnus force tends to de-
crease the tunneling rate. In the absence of pinning and

dissipation, there is no tunneling for a strong VVDP
Magnus force. Detailed results have been obtained when

one or all of them are absent. Both pinning and dissipa-
tion tend to suppress the influence of the VVDP Magnus
force on vortex tunneling. Present results may explain
the absence of effects of the VVDP Magnus force in vor-
tex tunneling experiments on dirty superconductors.

We thank Moo Young Choi, Qian Niu, and Yong Tan
for helpful discussions. This work was supported by U.S.
National Science Foundation under Grants No. DMR-
8916052 and No. DMR-9220733.

[I] A. V. Mitin, Zh. Eksp. Teor. Fiz. 93, 590 (1987) [Sov.
Phys. JETP 66, 335 (1987)];A. C. Mota, P. Visani, and
A. Pollini, Phys. Rev. B 37, 9830 (1988); N. Giordano,
Phys. Rev. Lett. 61, 2137 (1988); A. C. Mota, G. Juri, P.
Visani, A. Pallini, T. Teruzzi, K. Aupke, and B. Hilti,
Physica (Amsterdam) 185-1$9C, 343 (1991); L. Fruch-
ter, A. P. Malozemoff, I. A. Campbell, J. Sanchez, M.
Konczykowski, R. Griessen, and F. Holtzberg, Phys. Rev.
B 43, 8709 (1991); Y. Liu, D. B. Haviland, L. Glazman,
and A. M. Goldman, Phys. Rev. Lett. 68, 2224 (1992); D.

Prost, L. Fruchter, I. A. Campbell, N. Motohira, and M.
Konczykowski, Phys. Rev. B 47, 3457 (1993); J. Tejada,
E. M. Chudnovsky, and A. Garcia, ibid. 47, 11552
(1993).

[2] G. Blatter, V. B. Geshkenbein, and V. M. Vinokur, Phys.
Rev. Lett. 66, 3297 (1991); G. Blatter and V. B. Gesh-
kenbein, Phys. Rev. B 47, 2725 (1993).

[3] M. P. A. Fisher, T. A. Tokuyasu, and A. P. Young, Phys.
Rev. Lett. 66, 2931 (1991).

[4] P. Ao, Phys. Rev. Lett. 69, 2997 (1992).
[5] P. Ao and D. J. Thouless, Phys. Rev. Lett. 70, 2158

(1993); P. Ao, Q. Niu, and D. J. Thouless, Physica B&C
(to be published).

[6] Q. Niu, P. Ao, and D. J. Thouless (to be published).
[7] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149,

374 (1983); 153, 445(E) (1984).
[8] J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197

(1965).
[9] D. J. Thouless, P. Ao, and Q. Niu, Physica A (to be pub-

lished).
[10]J. K. Jain and S. Kivelson, Phys. Rev. A 36, 3467 (1987);

Phys. Rev. B 37, 4111 (1988); H. A. Fertig and B. 1.
Halperin, ibid 36, 7969 (198.7).

[11]C. M. Muirhead, W. F. Vinen, and R. J. Donnelly, Philos.
Trans. R. Soc. London A 311,433 (1984).

[12] P. Ao, J. Low Temp Phys. $9, 543 (1992).
[13]The same result was obtained for the electron tunneling

in the presence of a magnetic field by P. Ao, Mod. Phys.
Lett. B 7, 927 (1993).

[14] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A.
Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1

(1987).
[15] A special case of Eq. (22) was obtained by M. V.

Feigel'man, V. B. Geshkenbein, A. I. Larkin, and S. Lev-
it, JETP Lett. 57, 711 (1993).

[16] This result was obtained in Ref. [9].

135


