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Time-independent wave-packet forms of the Schrodinger equation (TIWSE) and Lippmanti-
Schwinger equation (TIWLSE) have been derived by a partial time-to-energy Fourier transform of L
wave-packet solutions to the time-dependent Schrodinger equation. The new equations retain the initial
wave packet Z(tp) as a "universal source" of scattered waves, which applies for all colIision energies E
contained in the initial wave packet. The relationship between the solution +,,(E) of the TIWSE or
TIWLSE and the scattering solution 0 i+i(E) of the standard time-independent Lippmann-Schwinger or
Schrodinger equation is given and the method illustrated by a computational application.

PACS numbers: 03.65.Nk

The time-independent Lippmann-Schwinger equation
(Tl LSE) is fundamental in formal scattering theory

since, unlike the time-independent Schrodinger equation

(TISE), it explicitly contains the boundary conditions

ensuring a physically correct wave function [I]. Definite

energy scattering solutions manifest less convenient prop-
erties than bound states. In particular, definite energy
scattering states correspond to cases where the colliding

partners separate arbitrarily far. Thus, the wave function

does not vanish at large separations and does not belong
to Hilbert space, i.e., it is not "normalizable" ("L "). It
is well known that the TILSE rigorously comes from solv-

ing the time-dependent Schrodinger equation (TDSE)
[I]. Time-dependent solutions are L functions, con-

structed as superpositions (wave packets) of the non-L

definite energy states. A rigorous, wave-packet derivation

of the TI LSE has been given in considerable detail in the
classic work of Golberger and Watson [I]. The TILSE is

(E K)y, (E)=0— (2)

It is su%cient and convenient here to treat a one-

dimensional problem; 4tq(E) is simultaneously an eigen-

state of linear momentum (=hk) and energy E
(=h k /2m). Note that in three dimensions, k is a vec-

tor. In the 1D case, its vector nature is reflected in the

occurrence of both positive and negative values, so there

is a twofold degeneracy. The scattered wave portion of
et+, (E) is

'Itk+ (E) =
Pp (E)+ VQp (E),

E —H+ie
where @t(+)(E) is the causal or outgoing scattered wave

solution, H is the full Hamiltonian composed of the sum

of an unperturbed piece K describing the well-separated

projectile and target, and a perturbation V responsible for

the scattering, e is a positive parameter ensuring the

causal boundary condition on the scattered waves, and

Qk (E) is the solution of the free TISE,

We close this summary by noting the properties of
%'g (E), based on Eq. (3). Most important is the fact
that the scattered wave source Vpt, (E) depends on energy
E. Thus the action of (E —H+ie) ' must be complete-

ly recalculated at every energy, no mat ter how one
chooses to compute the scattered wave [2-6], and a large
portion of the work in solving Eqs. (I ) and (3) must be
repeated at every energy.

It would be enormously useful to have a TISE or
TILSE with a universal source replacing Vp(E); i.e. , a
source of scattered waves independent of the energies of
interest. Here we report the derivation of a new inhomo-
geneous TISE, and concomitant LS-like equation which

does have a universal source function, and more impor-

tantly, explicate the relationship of the new to the old

equations and solutions. The new equations, like the
standard TILSE, result from time-dependent (wave-

packet) quantum dynamics; they can be viewed as time
independent wave packet S-chrodinger and wave-packet
Lippmann-Schwinger equations (TIWSE and TIWLSE).
The universal source is the initial wave packet [a superpo-
sition of p(k)'s with different k's or energies), so that the
same source applied for any energy contained in the ini-

tial wave packet. To simplify the analysis, we consider
initial wave packets with momenta pointing only toward
the target. The initial wave packet is positioned to the
left of the target, so only positive semidefinite momenta
are employed. Below, we analyze the solution to these
new equations and compare them to those of the standard
equations. We also give results from an example applica-
tion of the new equations.

We begin with the time-dependent Schrodinger equa-
tion„

I A =0@,B (4)
BE

where 7t(t) is a localized, L function. This equation is

solved by an integrating factor to yield

%'g)(E) = V4t(E) .
1

E —H+ie
(3)

g(t) =exp( —i H [t —tp]/h)lt(tp),

where Io is any time prior to the overlap of the wave
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packet with the target. [To verify that g(t) is a solution,

simply substitute it into Eq. (4).] The essential step in

deriving the TIWLSE is to do a partial time-to-energy
Fourier transform of g(t). We dePne the function +,, by

(6)

or

1 —l(e+ —H)io/a 1

2%i (E —H+ie)
i(E-0+ie)t/h I t

Ir to giEpr,

where E+ =E+ie, e & 0. The upper limit yields zero and
the lo~er limit yields

e,,(E)= . g(t p) .
i 1 (lo)

Using the LSE for the full Green's operator in terms of
the free Green's operator (E —K+ie)

and because g(t) is an L wave packet, the integral con-
verges as written. One can carry out the time integral
formally by inserting the usual convergence factor,
exp[ —e(t —tp)]. The subscript tp implies that the
time inde-pendent wave function O,,(E) may depend on

the initial time tp. Figure 1 shows how space is divided
into three regions by the initial, localized wave packet.
The packet g(t) for t ~ tp, while remaining L. , can
spread out in ql/ regions of configuration space, depend-
ing on the value of t. However, g(t) for t suII)ciently less
than tp will be non-negligible only in region III, assuming
that

8 oo

g(toIX) = dk'A(k')e' "

(i.e., that a)l the components of the initial wave packet
are moving toward the region of the potential at t tp,
and that at time tp the packet is non-negligible only in re-
gion II).

We begin by evaluating Eq. (6) in region I [to the right
of g(tpIx)]. Combining Eqs. (5) and (6), and integrating
over t analytically, we obtain

I ~
d

i(E+ H)(t IP)/h ( -)

1

E —H+ie
1 + 1 1

E —K+i e E —H+i e E —K+4

ik'x Ik'x

E —K+i z E —E'+i e

since

ik x ik x=E& ik x(f k')'
2m

But by Eq. (I), we can write Eq. (I2) as

(l4)

oo I

~,(Elx)= ' „dk', . ~&"(E'Ix) (l5)

and by changing the integration variable from k' to E'
and using the Cauchy residue theorem, obtain

+,,(EIx) =
2

9'h+ (EIx), x C region I, (l6)mA (k ) (+)

with E =it k /2m.
Now we note that we could also have written the

right-hand side of Eq. (8) as

(E H)(I Ip)/h (-)1e g fp

i (E —H ) (&f so)/h—
.4 oo 4 —oo

and note that, in region I, the second term is zero. This is

because it corresponds physically to evolving the packet
backward in time, and since g(tp) has only positive
semidefinite momenta, the packet must move further
away from region I. However, this shows that

(E H)(& —Io)/h (t )
'mA—(k) @(+)(E)

2)th "-" @2k

(I I)
where K is the kinetic energy operator, along with Eq.
(7), we write

~„(EIx)
= ' " dk~(k)"'"'" ""' '"'""

2z~p '"''
E —E'+ie

(l2)
Here we have used the fact that

ggg)on K
(x, & x~ X~ Regl&~ ~ (x & x~)

V(X)

FIG. I. Regions I, II, and III are depIcted. Region I includes all x values beyond the leading edge of the initial wave packet
[which is taken to not overlap the target or potential, V(x}l. Region III includes all x values behind the trailing edge of the initial
wave packet. Region II is that where g(to} is significantly different from zero.
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which holds not only in region I, but everywhere. [The above can also be proved using the fact that the initial wave

packet can be expressed as a superposition of the LS states with the same expansion coefficients A(k) as occur in the
plane wave superposition, make use of the fact that these LS states are eigenstates of the full Hamiltonian 0, and then
doing the time integration using a well known representation of the Dirac delta function. )

Finally, we use Eqs. (17) and (18) to evaluate +,,(E(x) in region III as

%,,(E~x) = V + (E~x) — dt e ' g(/p), x 6 region III.
&2k 2/rh "—

Evaluating the integral over r formally using the convergence factor exp(e[t —tp]//t ), we have

i(E —H —je)(l —to)/h I ~ 1 —i(E —H ie)i0—/h I i(E —H —ip)i/h I i io
OO 2El F. —0 —I t.

The lower limit gives zero and the upper limit yields

(20)

(E —H)(f —I &/h 1dte g(tp) = g(/p), x 6 region I I I .—OO 2/r(E —H —ie)
But in region III, H equals K (the potential is zero there) and using Eq. (7) we write in this region

i(F. —H)(i «)/h-, i d, 3 (k )e'""
dre g(rp) =

aJ —oo E —(hk') '/2m —i E

(21)

(22)

This is closed with a counterclockwise contour and by the
Cauchy residue theorem yields

i (E H&(i io)/h -i —i mA (k )dte g&toj = —
2

e' ", (23)
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FIG. 2. The reactive transition probabilities (for transfer of
the central H atom) are plotted versus total energy in electron-
volts (eV). The solid curve denotes H+H2(a, v =0) H2(p, c

'

0)+H, where the reactant arrangement is labeled a and the
product arrangement P. The dotted curve is for the product
molecule in the v' 1 (first excited) vibrational state, and the
dash-dotted curve is for the product molecule in the v'=2
(second excited) vibrational state. The results agree to graphi-
cal accuracy with those of Bondi and Connor [l ll.

so that in region III we have

+i,(E ~
x) = [m& (k)/h 'k] [+/', +'(E

~
x ) —e' "] (24)

which just involves the scattered wave. The dependence
of O,,(E~ )xon tp is strictly only in the precise extent of
regions I, II, and III, and this is controlled by g(tp).
Within regions I and III, 9',,(E~x) is given by Eqs. (16)
and (24), respectively, and is thus independent of "rp"
within these regions. In region II, which disjoins regions

I and III, O,,(E) makes a continuous transition between
its functional forms in regions I and III. As to
region I includes all of configuration space and 0,,(E) is

proportional to 0'&+ (E) everywhere.
We have applied the new formalism and analysis to a

realistic model for rearrangement scattering of a hydro-

gen atom with a H2 diatomic molecule, constrained to a
line. Both nonreactive and reactive scattering are al-
lowed. The system is well studied and, at certain energies
long-lived resonance complexes are formed [7]. We fol-
low earlier investigations in using the "LSTH" potential
surface for the calculations [8]. The action of the full

Green s function (E —H+ie) ' on the initial packet,
g(tp), in Eq. (10) is evaluated as a sum of Chebychev
polynomials according to [9,10]

(E) = g a, (E,H, AH)T, (H')g(rp), (25)

where

1 1 r
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FIG. 3. As in Fig. 2, except that the process is nonreactive.

Thus, the final molecule can be in the v' 0, 1,2 states, but no

exchange of atoms has occurred.
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H' = (H —H)/IJ. H,

H =(H~,. „+HI;„)/2,

lJ.H =(Hm, „—Hm;, )/2,

(26)

(27)

(28)

(2 —b„,)exP( i E—to/h ) [E—H i J—(hH ) z —(E —H ) z]"
a„(E,H, lJ.H) =—

2tr(AH)" J(t5H) —(E —H) '
(29)

with H,. „and H;„ the maximum and minimum eigen-
~

values of H [8,11].All the energy dependence resides in

the purely scalar factors a„(E,H, /JH) so that once the
"basis vectors, " T„(H')g(to), n =0, 1, . . . , N are known,
constructing solutions for any energies contained in g(to)
involves very little extra work. +,,(E) is a proximated
by a sequence of normalizable functions %',,~ (E) with N
chosen so that the normalizable +,I (E) coincides with

the non-normalizable +,,(E) only in the region including
and surrounding the potential.

In Figs. 2 and 3 we give results for reactive and non-
reactive transitions over a range of energies. These re-
sults were obtained from a single initial Gaussian wave

packet for translation of the incident H atom times the
ground vibrational state. The results agree (to graphical
accuracy) with earlier solution of the TISE [11].

The TIWLSE approach corresponds to a purely spatial
wave-packet propagation versus the temporal-spatial
wave-packet propagation of standard time-dependent
quantum mechanics. Because of universal source and the
simple relation of the new solution to the TILS solution
results for many energies are obtained from a single spa-
tial propagation using an initial-value-like computational
approach. This transfers to time-independent quantum
scattering the advantages possessed by wave packet
methods [12,13].

Finally, we note that although the partial time-to-
energy transform leads to a new formalism for time-
independent scattering theory, an analogous transform
has long been used in the treatment of the quantum
mechanical Liouville or von Neumann equation in statist-
ical mechanics [14].
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