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A formalism is developed for studying genetic algorithms by considering the evolution of the
distribution of fitness in the population. The effects of selection on the population are problem
independent. The formalism predicts the optimal amount of selection. Crossover is solved for a
model problem—finding low energy states of the one dimensional Ising spin glass. The theory is

found to be in good agreement with simulations.
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Genetic algorithms (GAs) are search techniques for
finding good solutions to hard problems [1,2]. They have
been applied to problems as diverse as the traveling sales-
man problem and the design of efficient aerofoils. Instead
of making changes to a single solution, a population of so-
lutions is evolved. Improvements are made by combining
good solutions to produce (possibly) better ones.

To understand how GAs work, and thus to optimize
their performance, it is necessary to understand their dy-
namics. Although a genetic algorithm can be described
as a Markov chain and thus solved formally (3], the ef-
fects of finite population make the transition probabil-
ities very complicated. Consequently, this formulation
has not yielded a predictive description of genetic dy-
namics. Another approach would be to exploit the well-
known relationship between stochastic dynamics and the
statistical mechanics of disordered systems. This is the
subject of this paper. Statistical mechanics has already
been applied to the study of other genetic dynamics (e.g.,
[4,5]). However, in these previous studies the selection of
the individual to reproduce is random; there is no notion
of fitness, whereas in GAs an individual reproduces with
a probability determined by its fitness. In addition, the
mechanisms of genetic mixing in the previous works were
simpler than the crossover of the GA.

In this Letter we show that statistical mechanics can
be used to predict the evolution of a GA. We show that
selection can be understood in terms of Derrida’s ran-
dom energy model [6]. To elucidate other aspects we
study a toy problem—finding low lying states of the one
dimensional Ising spin glass. Here we just consider the

0031-9007/94/72(9)/1305(5)$06.00

two most important operations, selection and crossover.
The techniques we have used can be readily extended to
other problems and other GA operators. A fuller discus-
sion will be given elsewhere [7].

The techniques developed here are useful in extending
simple genetic and population models to include selec-
tion and crossover. In addition, they could have practi-
cal benefits to those applying GAs in optimization. This
formulation predicts the evolution of the GA in terms of
the amount of selection and other operators; this knowl-
edge could help find the optimal values of selection and
crossover. As an example, many investigators have found
that increasing the degree of selection as the population
evolves considerably improves performance [8]. The sta-
tistical mechanics formulation predicts the optimal value
of selection in terms of properties of distribution of fit-
ness, and does show that this optimum should increase
during evolution.

By studying a problem with well defined statistical
properties the techniques of statistical mechanics can be
used to calculate the behavior of a typical sample. The
toy problem we examine is that of finding low lying states
of a one dimensional spin glass with random nearest-
neighbor couplings J; drawn from a Gaussian distribu-
tion with zero mean and unit variance. The energy for a

configuration of spins, S = (S1,S2,...,9N+1) is
N
E(S)=-)_ JiSiSis1. (1)
i=1

The ground state energy is Emin = — Y, |Ji|. Although

1305

© 1994 The American Physical Society



VOLUME 72, NUMBER 9

PHYSICAL REVIEW LETTERS

28 FEBRUARY 1994

this problem is trivial to solve, it is nevertheless interest-
ing in that is has an exponential number of local minima
under single spin flip dynamics (typically 2V/3). Its ther-
modynamic properties have been extensively studied; see
for example [9,10].

In its most basic form GAs work as follows: a popula-
tion of solutions, each represented by a string, is gener-
ated at random; the fitness of the solutions is measured
and the fitter solutions are selected for; these fit solutions
are combined in pairs to form new solutions; a random
mutation can be applied; the fitness of the new solu-
tions is tested and the selection, crossover, and mutation
are repeated; the algorithm finishes when the fitness of
the population stops improving. Many modifications to
this basic scheme are possible. For example, members of
one generation can be transferred to the next generation
without any modifications. These enhancements can be
studied within this formalism.

As an example we consider a GA to find the low ly-
ing states of a spin glass chain. The chain is represented
by the vector of spins, S®, where a = 1,..., P labels
the different members of the population. The vectors of
spins could be the strings used by the GA; under this
representation the system has many local minima. Of
course, other representations could be used. For exam-
ple the spin variables could have been replaced by a new
set of spin variables 77 = S3*SZ,;, in which case the
problem becomes much simpler, having no local minima.
Alternatively we could have put the spins in a random
order which would have made the problem considerably
harder for the GA, as crossover would break many bonds.
Thus the effect of different representations can be ex-
plored within this model. Here we will consider only the
first of these representations.

The initial population is generated by choosing at ran-
dom each spin to be +1 or —1. The energy, E* = E(S%)
(or negative fitness), for each member of the population is
calculated from Eq. (1). A new population of P members
is selected by choosing members from the old population
with a probability depending on their fitness. A number
of different selection probabilities have been proposed.
Here we weight each member with its “Boltzmann” prob-
ability

p* = il
Z b

P
Z=Y ePF, 2)
a=1

where 3 controls the amount of selection. In crossover a
pair of solutions is mixed together to form a new solu-
tion. We have used “simple” or “single-point” crossover
in which the strings are divided at a randomly chosen
bond L and the subchains after that point are swapped.
Since good solutions correspond to many bonds being
satisfying, it is natural to use a crossover which pre-
serves as many bonds as possible. Had we used uniformed
crossover, in which each spin is chosen from either of the
parents at random, then so many bonds would be broken
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that the child would have a very small chance of inher-
iting the fitness of its parents. In mutation randomly
chosen spins are flipped. For the spin glass chain muta-
tion turns out to be not so important. We will see why
this is when we consider crossover in more detail.

Our approach to understanding GAs is to examine the
change in the distribution of energies in the population,
pt(E), at each generation t. For a finite population the
energy distribution is a sum of delta functions which will
depend on the particular choice of the couplings and on
the randomly chosen initial population. We will therefore
consider the statistical properties of the distribution, the
mean, variance, and higher cumulants (which are simply
related to the moments). A typical evolution is illus-
trated in Fig. 1. The distribution p;(F), averaged over
100 samples, is shown for ¢ = 0, 10, 20, 30, and 40. Ini-
tially the distribution is nearly Gaussian with zero mean
and variance N. There are small corrections to the Gaus-
sian distribution which are easily calculated: the largest
correction is to the fourth cumulant, which is equal to
—6N[1+ (N —7)/P]. As the population evolves its aver-
age energy decreases while the width of the distribution
narrows—this narrowing is commonly referred to as con-
vergence. Convergence is the inevitable consequence of
selection acting on a finite population, since the fitter in-
dividuals will be selected more than once and children
sharing the same parent are correlated. The distribution
is also slightly skewed by selection, although this is hard
to see by eye. This skewness together with higher cumu-
lants reduces the efficiency of the search. In terms of the
cumulants the role of crossover can be viewed as reducing
the skewness.

To study the evolution of the energy distribution we
calculate the effect of selection and crossover on an arbi-
trary distribution. The full evolution of the GA is easily
calculated by iterating

pu(B) " p(E) 25 pi(B) = pesa(E),  (3)
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FIG. 1. The distribution of energy is shown after 0, 10,
20, 30, and 40 steps of the GA applied to the 1D spin glass.
The curves were created by averaging over 1000 samples for
N =63, P =50, and 8 = 0.05.
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starting from the initial population po(E). Other op-
erators such as mutation could also be included in this
sequence.

Selection depends only on the energy distribution p(E)
and not on the details of the particular problem. Thus
the effect of selection is universal. To calculate this ef-
fect it is convenient to consider In(Z) as a function of £,
where Z is the sum of Boltzmann weights, since In(Z) is
a generating function for the cumulants after selection

Kk = (- 1)" 35" ln(Z) (4)
Furthermore, In(Z) self-averages—that is, its average
value equals a typical value—so we can consider its av-
eraged value (In(Z)),, where (- - -) denotes averaging over
the energy distribution p(E).

The random energy model (REM) proposed by Der-
rida [6] consists of a set of random energy levels which
are populated with a probability proportional to a Boltz-
mann factor. Our form of selection is precisely the REM,
except that the energy levels come from a distribution
that changes during evolution. To evaluate (In(Z)), we
use Derrida’s trick of writing the logarithm in terms of
an integral representation, so that

e—t (e—t zZ

@y, = [ ———ear (5)

Since the partition function involves a sum over inde-
pendent energy levels, the average over each energy level
decouples. Thus evaluating (In(Z)), reduces to perform-
ing a two dimensional integral, which can be performed
numerically. However, by making a small selection (high
temperature) expansion the integral can be done analyt-
ically. To do this we expand (exp(—tZ)), in powers of
t(1 — e~ PF). Ignoring terms of order 1/P? and using

(e7F), = /_ " p(B)etEdE = 4(it), (6)
where p(t) is the Fourier transform of p(E), we find
e caiay _  P2i6)
(In(2)), = n (p(:6)) — - @ )

To turn this into a relationship in terms of the cumulants
we use the standard expansion for the Fourier transform
of a probability distribution

In 30)) = 3 S, ®)
n=1

Substituting this into Eq. (7) and using Eq. (4) we can
obtain a relationship for the cumulants after selection in

terms of the cumulants before selection.
To leading order the first cumulant becomes x{ =
— Bk2 + ---. Thus the mean energy is shifted by an
amount proportional to the selection parameter G times

the variance, k2. The variance is changed by an amount
k3 = (1—1/P)ka—Bk3+- - -. In Fig. 2 we show the rate of
convergence, k3/Ka, versus the (scaled) selection param-
eter 31/k2/2In(P), for populations of size 25, 21°, and
220 starting from a Gaussian distribution (i.e., k, = 0,
n > 2). The solid lines are calculated by numerical in-
tegration using Gaussian quadrature. The dashed lines
show the small 8 expansion. Note that the abscissa is
equal to 42 times the specific heat for the REM. The or-
dinate, to first order in 3, is proportional to the shift in
the mean energy of the distribution.

We can see from Fig. 2 that even for 8 = 0 (arbitrary
selection) there is an intrinsic convergence rate, which re-
duces the variance in the population by a factor 1—-1/P.
This arises because, by chance, some members of the pop-
ulation will not be selected while other members will be
selected more than once. As 3 increases the curve is
initially flat. The improvement in the mean energy is
proportional to 8 so it pays to increase (3, since there
is no extra loss of diversity in the flat region. As § in-
creases past some optimal value around the shoulder of
the curves in Fig. 2, the diversity in the population de-
creases very rapidly with selection and the GA will be
unlikely to find a good solution. Thus we see for Boltz-
mann selection there is an optimal choice of the selection
parameter, 3, and we can predict how it scales. Since the
variance decreases as the population converges the degree
of selection should be increased, as has already been ob-
served [8]. So far we have ignored higher cumulants. Se-
lection introduces a skewness into the distribution which
slows down the shift in the average energy and increases
the rate of convergence. Crossover reduces these higher
cumulants allowing the GA to search for better solutions.

Crossover, unlike selection, is highly problem depen-
dent. To calculate its effect we consider crossing two
chains at a randomly chosen site L. The energy of each
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FIG. 2. The curves show the change in the variance of the
energy distribution after selection starting from a Gaussian
distribution for P = 25, 2'°, and 2?° versus the scaled se-
lection parameter 8, = B(x2/2 ln(P))l/ 2. The solid lines are
calculated by numerical integration. The dashed lines show
the small 3 expansion.
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parent is equal to the sum of the energies of its two sub-
chains E* = E¢ + E{;_;, where

L N
Eg=-> JS¢S%,, Ef_p=- JiSFSE. (9)
i=1 i=L+1

One child will have energy E* = E¢+E5 _, +A;, where
Ay is the change in energy at the interface

Ar=—JL(S¢SE ., — SESEL 1), (10)
while the energy of the other child is obtained by inter-
changing a and 5. The sum of the energies of the two
children will equal that of the two parents except for a
possible correction due to the interface energy. For the
spin glass chain the interface energy is very small so that
the penalty for doing crossover is very low. In fact, on
average crossover will cause less disruption than muta-
tion; therefore in this model mutation does not play an
important role. This would not be true for most models;
for example, in higher dimensional spin glasses crossover
would cause a disruption of order LP—1,

To calculate the effect of crossover we need to know the
probability distributions for the energies of the subchains
and the interface. The probability, p°(E), that a child
will have energy E after crossover is just a product of
the probabilities for the energies of the subchain and at
the interface. In terms of Fourier transforms

p°(t) = pL(t) Bn-L(t) Pa,(t), (11)

and the cumulants after crossover are equal to the sum
of cumulants for the three probability distributions py,,
PN-L, and pa,. Calculating the energy of the subchains
is in general complicated since we need to know the distri-
bution of correlations between the chains. Rather than
attempt to calculate this ab initio we estimate it from
the energy distribution. This calculation becomes espe-
cially simple in the large N limit. Assuming the energy
is spread evenly over the population then the probability
of a subchain of length L = [N having energy Ey is

e—(EL —LE)?/2I(1 — )k,

PEUE) = — o, @
from which we find
In(pr(t)) = =I(l — 1)k2/2 + In (p(It)). (13)

The probability that the interface bond will be broken or
satisfied will, in general, depend on the energy of the two
parents and their correlation. For the spin glass chain
the average interface energy is

(Ar) = —K1K2 /2N (14)

There are also contributions to the higher cumulants from
DPa;, but these give relatively small corrections, which
are negligible in the limit N — oo. Using Egs. (11),
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(13), and (14) and averaging over the crossover point L,
we find that the first cumulant is shifted by an amount
(Ar), the second cumulant remains unchanged, while the
higher cumulants are suppressed by

kS = 2kp/(n +1) forn =3, 4, 5. (15)

In Fig. 3 we show the evolution of the first two cumu-
lants for selection and crossover measured from simula-
tion (solid curves) and by iterating the equations derived
above starting from a Gaussian distribution and keeping
the first six cumulants (dashed curves). The agreement
with simulations is very good provided 8 and P are not
too large. For larger values of these parameters the ap-
proximations used begin to break down and a more ac-
curate treatment is necessary.

At a crude level crossover can be viewed as producing
two competing effects. First it reduces the higher cumu-
lants (in particular the skewness), which means the pop-
ulation contains better solutions. Second, it produces an
interface energy due to the disruption of the string which
tends to reduce the average fitness of the population. By
increasing the amount of mixing the higher cumulants
will be further suppressed but usually at the cost of an
increased interface energy. If the interface energy is large
then it pays to use strong selection so that the evolution
involves few crossovers. Conversely when the interface
energy is small, for example by allowing crossover to oc-
cur only at bonds that do not cost any energy, then it
would be better to use weaker selection.

The approach adopted here gives both a qualitative
and quantitative understanding of how GAs work. This
allows some strong predictions to be made about the
optimal parameters and representations that should be
used. This work can be easily extended to other toy
problems such as the Potts spin glass which would shed
light on other representational issues. Furthermore we
would hope that this approach might be extendible to
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FIG. 3. Comparison of theory and simulations for selection
and crossover using 8 = 0.01 with P = 50 and N = 255. The
solid curves show the simulations averaged over 500 samples.
The theory is shown by dashed curves, which are nearly ob-
scured by the simulations.
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